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Abstract

Recently, the general contour Monte Carlo has been proposed by Liang (2004) as a space annealing ver-
sion(ACMC) for optimization problems. The algorithm can be applied successfully to determine the ground
configurations for the prediction of protein folding. In this approach, we use the distances between the con-
secutive C, atoms along the peptide chain and the mapping sequences between the 20-letter amino acids and
a coarse-grained three-letter code. The algorithm was tested on the real proteins. The comparison showed
that the algorithm made a significant improvement over the simulated annealing(SA) and the Metropolis

Monte Carlo method in determining the ground configurations.
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1. Introduction

Prediction of tertiary structure of proteins or protein folding from its sequence has been one of the
most challenging problems in biophysics. The difficulty of the problem is that the dimension of the
system is usually high because it is in the same order with the number of atoms involved in the
system, and the energy landscape can be characterized by a multitude of local minima separated
by high-energy barriers. At low temperatures, the conventional Markov chain Monte Carlo algo-
rithms, such as the Metropolis-Hastings algorithm(MH; Metropolis et al., 1953; Hastings, 1970),
and molecular dynamic simulations tend to get trapped in local minima. Thus it makes the simula-
tions ineffective. Attempts to alleviate this problem have been developed and successfully applied
to various problems such as Monte Carlo with minimization (Lt and Scheraga, 1987), simulated an-
nealing(SA; Kirkpatrick et al., 1983) and genetic algorithms(GA; Holland, 1975; Goldberg, 1989).
Furthermore, there has been studied in finding the global minimum-energy conformation by study-
ing the off-lattice model protein, so-called BLN model, introduced by Honeycutt and Thirumalai to
avoid the high energy barriers between local minima in recent years (Kim et al., 2003). The BLN
model is a coarse-grained model that uses an a-carbon trace to represent the protein backbone
in which structural details of the amino acids and aquecus solvent have been integrated out and
replaced with effective bead-bead interactions. This model is particularly useful in the study of
predicting the native structure of a protein.
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Table 2.1. Sequence mapping between 20-letter(20) amino acid and coarse-grained three-letter(3) code

20 3 20 3 20 3 20 3
Ala B Met B Gly N Asn L
Cys B Val B Ser N His L
Leu B Trp B Thr L Gln L

Ile B Tyr B Glu L Lys L
Phe B Pro N Asp L Arg L

Recently, Kim et al. (2005) proposed the conformational space annealing(CSA) algorithm that
generates lower ground-state energies than those reported in the literature in off-lattice AB protein
model. Zhang et al. (2007) suggested that the genetic-annealing algorithm is very promising for
searching the ground states of protein folding in three dimensional off-lattice AB model. However,
they didn’t investigate real proteins in Protein Data Bank(PDB).

In this paper, we apply the ACMC algorithm to the real proteins with the BLN model. The contour
Monte Carlo(CMC) algorithm (Liang, 2005) is a generalization of the Wang-Landau algorithm
(Wang and Landau, 2001) and the 1/k-ensemble algorithm (Hesselbo and Stinchcombe, 1995). It
can be used for both continuous and discrete systems. The self-adjusting nature of the algorithm
makes it be able to overcome any barrier of the energy landscape. The ACMC algorithm is an
accelerated version of the CMC algorithm for optimization problems. Qur numerical results show
that ACMC is a very promising algorithm for finding the ground configurations of proteins.

The remaining part of this paper is organized as follows. In Section 2, we describe the BLN model.
In Section 3, we review the ACMC algorithm briefly. Section 4 presents numerical results for real
small proteins. In Section 5, we conclude the paper.

2. The Model

The energy function for the model is proposed in the off-lattice frustrated model developed by Kim
et al. (2003). The protein chain is modeled as a sequence of beads of three flavors: hydrophilic,
hydrophobic, and neutral; these are designated by L, B and N, respectively(Table 2.1). Attraction
between the hydrophobic beads provides the energetic driving force for formation of a strong core.
Repulsion between the hydrophilic beads and other beads is used to balance the forces and reduce
the bias of the correct native fold. The neutral beads also serve with little repulsion and typically
signal the turn regions in the sequence.

The total potential energy function of the BLN model with M residues is given by

v

Vit Vo+VitV,
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where V} is the bond-stretching energy, V, the bond-angle bending energy, Vi the torsional dihedral-
angle energy and V, the van der Waals energy. The force constant is given by K, = 400¢/a?, € is the
energy constant, a the average bond length, and r; the position of the i*" residue. Ky = 20¢/(rad)?,
f; is the bond angle defined by three residuals 7, ¢ + 1 and 7 + 2, and 6y = 1.8326 rad or 105°. ¢;
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is the dihedral angle defined by four residues 4, i + 1, i + 2 and ¢ + 3. Each dihedral in the chain is
predefined: A; = 0 and B; = 0.2¢ if two or more of the four residues are neutral; A; = B; = 1.2¢ for
all the other cases. o is the Lennard-Jones parameter and r;; is the distance between two nonbonded
residues ¢ and j given by r;; = |r; — r;|. The nonlocal interactions are given by C;; = D;; = 1 for
BB interactions, C;; = 2/3 and D;; = —1 for LL and LB interactions, and C; = 1 and D;; = 0 for
all interactions involving N residues. All simulations are performed in reduced units, with a, ¢ and
o all set equal to unity.

3. Annealing Contour Monte Carlo Algorithm

In this section we describe the space annealing version of CMC algorithm (Liang, 2004). First
the general CMC algorithm is described briefly and then present its space annealing version for
optimization problems. Refer to Liang (2005) for the details of CMC.

Suppose that we are interested in sampling from the following distribution,

fla) = L exp {—Hi“’) } Czca, (3.1)

where 7 is called the temperature of the system and Z = [, exp{—H(z)/7}dz is the partition
function where X is called the sample space. The CMC algorithm works in the style of importance
sampling; that is, it may work directly on any nonnegative function ¥(x) defined on the phase space
A, instead on f(x) necessarily, although we often set ¢ (x) = exp {—H(z)/7} for convenience. For
the function ¥(x), we usually require that [, ¢(x)dx < co.

CMC generalizes the Wang-Landau algorithm (Wang and Landau, 2001) to continuum systems.
The generalization is mainly in three respects, the sample space, the working function and the
estimate updating scheme. Suppose that the sample space X is continuous and has been partitioned
according to the energy function H(z), into m disjoint subregions denoted by E1 = {z : H(z) < h1},
Ey ={z:h < H@&) < ha},...,En1 = {2 : b2 < H(z) < hyp1} and B, = {z : H(z) >
hm-1}, where hi,...,hm_1 are m — 1 specified real numbers. Let g(F;) = sz Y{x)dx denote the
weight associated with the subregion E;. The g(F;) is determined by our parameter setting and
phase space partition as described below. The CMC simulation proceeds in several stages.

Let T(- — ) denote a proposal distribution which is not necessarily symmetric, and z.; and
§**)(E;) denote the sample and the estimate of g(E;), respectively, at the k' iteration of the s**
stage of the simulation. In the first stage(s = 1), the simulation starts with the initial estimates

§OE) = = §°9(E,) =1 and an initial random sample 70,0, and then iterates as follows.

1. Propose a new configuration z* in the neighborhood of x, \ according to a prespecified dis-
tribution T'(- — ).

2. Accept ¥ with probability

min{g(s,k)(Ejrs_k) P(z*) T(x" — xs) 1}’

geREr, ) (er) T(zsr — a*)’

where I, denote the index of the subregion where z belongs to. If it is accepted, set x5 x+1 = *
and g<5”“+1>(Elms.kH+i) =M (B, ) +6Spi§<s’k>(E1mS.Hl) fori=0,...,m—1I,

s k1)
otherwise, set T x41 = 755 and g“"k“)(Ezl.s_kH) = §<S’k>(Elms‘k+i) + 5spi§<s’k>(EIzs . ) for
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t=40,...,m— I, ,, where p > 0 is a parameter which controls the sampling frequency for
each of the subregions.

The CMC algorithm is so general that it includes several other algorithms as special cases. If we
let ¥(x) = 1, X is finite, T(- — ) is a symmetric function, and p = 0, the algorithm reduces to the
Wang-Landau algorithm (Wang and Landau, 2001). In this case, § estimates the density of states
of the system. If we let ¢(z) = 1, X is finite, and p = 1, the algorithm gives a Wang-Landau-style
implementation for the 1/k-ensemble algorithm (Hesselbo and Stinchcombe, 1995). In this case §
estimates the cumulative density of states of the system.

Since the goal is to minimize the energy function H(z) in this paper, the following space annealing
version of the CMC algorithm is used for accelerating the optimization process. Let I, denote the
index of the subregions searching where a sample ¢ with energy z = H(z) belongs to. Let M (%)

denote the number of subregions searching from the set U?i(ls’w E; at the k' iteration of the s™*
stage of the simulation. The M(*¥) starts with MY = m and evolves as M%) = I, 40,
where Hpnin is the minimum energy value sampled so far in the run, and A is a user specified value
which controls the search space of each iteration. Since H...n decreases monotonically, the search
space shrinks iteration by iteration. The performance of ACMC also depends on the value of A. If
A is too large or small, the algorithm may take a long time to locate the global minimum or miss
the global minimum for ever if the proposal distribution is not very spread, respectively.

For an effective implementation of ACMC, several issues need to be considered.

o Sample space partition. The sample space partition should balance the following two consid-
erations. The first one is the acceptance rate of the sampling steps. Suppose that the MH
algorithm is employed to sample from the working density. Since the transition ratio of the
MH moves )

9(E;) ¥(x) T(z — y)
is invertible, that is, r(z — y) = 1/r(y — z), a partition which results in a small variance of
r is preferred. For simplicity, let T(- — -) be symmetric, ¥;(z) = ¥(z)/§(E:;)I(x € E;), and
3(u) = ¥(v)/4(E;)I(y € B;). We then have r(z — y) = v;(y)/s(z). This suggests that
to minimize the variance of r, the sample space should be partitioned such that each ;(z)
is as uniform as possible over the corresponding subregion. We note that a partition made
according to the energy function can satisfy this criterion approximately. For example, we
partition the sample space into the following m subregions with an equal energy bandwidth:
Ei={z:Hz)<wm}, B2 ={o:u1 <H() <uz},...,Em_1 = {2 : ttm-2 < H(z) < thm-1},
and E,, = {« : H(z) > um_1}, where u; —u;—1 = A, fori = 2,...,m — 1. The u; and
Um-1 can be chosen according to the problem under consideration, and A,, the so-called
the energy bandwidth of the partition, should be bounded by a reasonable number, say 1 or
2, to ensure that the local MH sampler can move freely within the same subregion with a
reasonable overall acceptance rate. If m is too small or large, then the sample space may not

be able to be well explored.

The second one is the number of subregions. Liang (2005) suggests that a small value of m is
preferred for a fast convergence. This is clear in the case of p = 0. Note this issue is in conflict
with the first one. Hence, a trade-off should be made between the number of subregions and
the variation of ¢;(x)I(z € E;)’s within each subregion.

e Number of iterations. The iteration numbers performed in each stage can be determined
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based on (A.7) in the Appendix of Liang (2005). Roughly, we should have

Ks+1 63
e ~ Gorr

For example, if s decreases geometrically with the rate v, then K, should increase geomet-
rically with the rate 1/~.

o Effect of 6. To measure the effect of § we assume that the sampler is trapped in the current
state z € E;, and a new state y € E; is proposed with 4 < j. The transition ratio is calculated
as in (3.2). Suppose that the proposal is rejected and the same proposal is made in the next
iteration, the transition ratio for the new iteration will be

9(E:) +6:9(E:)  ¥(y) T(y — x)
9(Ey) + 6sp7*9(E:) () T(x — y)

r(z—y) = (3.3)
For any p, it is easy to see that 7(x — y) < r'(z — y), that is, the acceptance rate is adjusted
to a larger value due to the rejection of the last iteration. CMC has the ability to adjust the
acceptance rate of the MH moves according to the historical samples. We call this ability the
self-adjusting ability in this article. Note that the MH algorithm does not have this ability,
and it tends to be trapped into a local energy minimum indefinitely. The self-adjusting ability
of CMC depends on the value of §. The larger value of §, the higher self-adjusting ability.
We usually set § to a large value, say, 1, at early stages of the simulation. This will force
the sampler to visit all subregions very fast. However, a large value of § makes the estimates
of g(E:)’s inaccurate. It follows from Corollary 1 (Liang, 2005) that the accuracy of the
estimates of each stage is in the order of O(8). To improve the accuracy of the estimates
G(E:)’s, 6 should decrease gradually with the progress of the simulation.

Theoretically, the decreasing rate of § will not affect the convergence of the algorithm. In this
article, we suggest a geometric scheme 6541 = v, for the decrease of §,. If we let §; decrease
geometrically with the rate v and let K, increase geometrically with the rate 1/v, the total
number of iterations needed for a CMC run will be approximately Ki(81/8ena)(v/(1—7)).
In this paper, we set v = 0.5.

e FEffect of p. Liang (2005) shows that the larger p, the faster convergence of the CMC algorithm.
The effect of p can also be understood intuitively as follows. Suppose the sample space is
partitioned according to the energy function, and the subregions are arranged in the ascending
order of the energy. As mentioned before, a choice of p > 0 will result in that the low index
subregions will be visited more frequently than the others. Since the mass of the distribution
is usually dominated by low energy regions, this choice often results in an efficient simulation.
However, an extremely large value of p may not be good. For example, if p = 1, all samples
will be drawn from the subregion E;, and the inference will be biased. However, since our
aim is to minimize the energy function H(z), we suggest setting p to a slightly large value,
say, 1. This often accelerates the search process for the minimum energy solutions.

4. Numerical Results

A simple representation was adopted as the BLN model, in which a residue was reduced to a bead
and its coordinate was in the position of the C, atom of the residue. Four small proteins were
selected as the tested targets from the Protein Data Bank(PDB); i.e., 1bds, lcrn, 2tgp and 9ins.
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The ACMC algorithm was first applied to these four real proteins. For the 1bds and lcrn proteins,
we partitioned the phase space into E1, ..., E114 with an equal energy bandwidth of 2; that is, we set
Ei={zex:H(z)<—-158},E; = {x € x: —158 < H(z) < ~156},...,Ehvu ={xr € x : H(z) >
70}. ACMC was run 10 times independently. In simulations, we set p = 1, A = 50,n; = 5.0e + 5,
and n.y1 = 1.1ns, where n, denotes the number of iterations performed in the s’ stage of the
simulation. The simulation proceeds until é; < 0.01. Here we set a high terminal value for A as
our target is minimizing H(z), instead of simulating from f(z). We utilized three types of local
moves (Liang, 2004). Let zr = (f3,...,0x) denote the current state of the inhomogeneous Markov
chain. In the type-I move, a component of . is picked up randomly to undergo a modification by
Gaussian random variable € ~ N(0, s*[H(xx) — Ho|), where s is a user tunable parameter and Hy is
a user guessed lower bound for H(zx). We set Hyp = —160. The variance of € suggests a large(small)
step size sy/H(zx) — Ho for high(low)-energy states. This allows the sampler to move through the
high-energy region fast and explore the low-energy region in detail. The type-II move is the same
with the type-I move, except for which two components are picked up at random. In the type-III
move, a spherical proposal distribution is used. A direction is generated uniformly, and then the
radius is drawn from N(0,2s*[H(xx) — Ho|]). The parameter s is calibrated such that the overall
acceptance rate of the three types of moves is about 0.2, as suggested by Gelman et al. (1996). For
this case, we set s = 0.15.

As the ACMC algorithm results in a random walk among subregions, E1, ..., E, ), it may not be
easy for it to locate the global minimum exactly. So we suggest the minimum energy configuration
sampled by the ACMC algorithm be further subject to a post-minimization procedure, just a few
hundred steps of Metropolis moves (Gelman et al., 1996) at a very low temperature. In this paper,
as a post-minimization procedure, we use temperature ¢t = 1.0e — 7. We set an energy bandwidth of
2.0, 6 = 100, s = 0.3 for 2tgp, and a energy bandwidth of 1.0, A = 50, Hg = —100, nst+1 = 1.2n;,
s = 0.15 for 9ins, and keep the same setting for all other parameters in both proteins with those
used by the previous example.

For comparison, SA, the popular optimization algorithm, and the MH algorithm were also applied
to these proteins. Each of the two algorithms was run 10 times independently with its default
parameter setting, and each run consisted of 1.0 x 10° iterations. The computational results for
four real proteins are summarized in Table 4.1. The comparison shows that the ACMC algorithm
has made a significant improvement over SA and MH in locating the ground states for the BLN
model] based on the minimum value and root mean square deviation(rmsd). For all four proteins,
the averaged minimum energies sampled by ACMC are much smaller than those by SA and MH in
all runs. In particular, the MH method may tend to get trapped in the local energy minimum since
its sampler never even reaches to the negative value. SA also seems to have local trap problems.
The differences of the energy values come from the differences of the folding angles.

To compare the performance of ACMC according to the energy bandwidth, we run the ACMC
algorithm with various energy bandwidths in 1bds protein. The computational results are sum-
marized in Table 4.2. As we mentioned in Section 3, the sample partition should be bounded by
a reasonable number, say 1 or 2, to ensure to get a reasonable overall acceptance rate, about 0.2.
The comparison shows that only when the ACMC algorithm uses the bandwidth 1 or 2, it has
a reasonable acceptance rate and can find the global minimum energy value. As we decrease the
bandwidth, the acceptance rate decreases and the minimum energy value increases. If we increase
the bandwidth, we get an opposite result in the acceptance rate. In addition, the result indicates
that the simulation takes a long time if the bandwidth is very small.
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Table 4.1. Comparison of the ACMC algorithm with the simulated annealing(SA) and the conventional Metropolis Monte

Carlo(MH) method.

ACMC .
b
R
9ins (30) —41»[4;321;(2169}983) 18‘7?142.23),5}317) 42,0567 —43.[0;15?(718.9]950)
Lbds (43) —42‘[1;622(227.7]700) 30.5?0;;{;?783) 470457 —49.[654’173(2251]033)
lom (46) —52.[672(6)5;(222.5]667) 36.52{5;;23.?050) L1785 “54'[232;.(3,261]340)
e | TSI | TG | | O

00 TP

: The averaged minimum energy and rmsd sampled by SA.
: The averaged minimum energy and rmsd sampled by MH.
: The averaged minimum energy sampled by ACMC.

: The averaged minimum energy and rmsd sampled by the post Metropolis moves.

Averaged CPU time (in minutes) cost by ACMC on an Intel Core(TM)2 DUO computer. The values
of rmsd were obtained from the each standardized structure versus the native standardized structures
of the PDB, and structures of proteins tested are as follows:

1bds(43; BENBBENNLN NLNLBBBBLN LENNNBNBLN LEBLBNLBEB BNL);

lcrn(46; LLBBNNBBBL NLBLBBLBNN LNLBBBBELBL NBBBBNNBLB NNLBBL);

2tgp(58; LNLBBBLNNB LNNBLBLBBL BBBLBLBNBB LLEBBNNBLB LLLLBLNBLL BBLLENNB);

9ins(30; BELLLBBENNL BBLBBBBBBN LLNBBBLNLB).

Table 4.2. Comparison of ACMC with various energy bandwidths in 1bds.

Bandwidth CPU(m)® Acceptance Rate Best? Aver.Post®
0.05 726.29 0.1119 —25.2381 —25.3064
0.10 432.03 0.1167 —32.7698 —32.9619
0.20 357.52 0.1484 —29.9510 —-30.2127
1.00 325.32 0.1981 —44.8659 —46.3816
2.00 300.25 0.2567 —49.5137 —51.8243
5.00 249.44 0.4445 —43.3256 —48.8986
10.00 215.01 0.6281 —28.4257 —38.3975

a: CPU time (in minutes) cost by a single run of ACMC on an Intel Core(TM)2 DUO computer.
b: The minimum energy sampled by a single run of ACMC.
c: The minimum energy sampled by a single run of the post Metropolis moves.

5. Conclusion

We have shown in this paper that the ACMC algorithm can be effectively applied to the prediction
of the protein folding on an off-lattice BLN model. Numerical results favor to ACMC in finding the
ground states, and thus show that ACMC is a very promising algorithm for a general optimization

task.

A further work of interest is how to balance the energy. The ACMC algorithm is very effective for
all proteins, but it is unstable from the standpoint of the root mean square deviation between the
structure of folded target protein and the native structure. The use of the ACMC algorithm will
be further explored to reduce its instability.
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