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Abstract

Generalized processor sharing{GPS) service policy is a scheduling algorithm to allocate the bandwidth of a
queueing system with multi-class input traffic. In a queueing system with single-class traflic, the stationary
queue length becomes larger stochastically when the bandwidth (é.e. the service rate) of the system decreases.
For a given GPS server, we consider the similar problem to this. We define the monotonicity for the head of
the line processor sharing(HLPS) servers in which the units in the heads of the queues are served simulta-
neously and the bandwidth allocated to each queue are determined by the numbers of units in the queues.
GPS is a type of monotonic HLPS. We obtain the HLPS server whose queue length of a class stochastically
bounds upper that of corresponding class in the given monotonic HLPS server for all classes. The queue
lengths process of all classes in the obtained HLPS server has the stationary distribution of product form.
When the given monotonic HLPS server is GPS server, we obtain the explicit form of the stationary queue

lengths distribution of the bounding HLPS server. Numerical result shows how tight the stochastic bound is.

Keywords: Scheduling, generalized processor sharing, head of the line processor sharing, monotonicity.

1. Introduction

Generalized processor sharing(GPS) service policy is a scheduling algorithm for multi-class input
traffic. Parekh and Gallager (1993} proposed the algorithm to allocate the bandwidth of the system
to each class. The unit, which is located in the head of the queue of a class, is served at the rate of
the bandwidth allocated to the class. The backlogged queues share the full bandwidth according
to the preassigned ratios. Thus, the total bandwidth allocated to all of the queues is equal to the
bandwidth of the system when there is at least one unit in the system, i.e. GPS is work-conserving.
When the GPS system has two classes with Poisson arrivals and the service requirement of a unit is
exponentially distributed, the distribution of the queue length has been obtained by Cohen (1988)
and Fayolle and Tasnogorodski (1979). However, for other cases, the previous studies by Adan et
al. (2001), Borst and Zwart (2003}, Borst et al. (2003) and Brandt and Brandt (1998) show that it
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Figure 2.1. GPS scheduling

is difficult to analyze the performance mathematically. For the asymptotic behavior of the queue
length distribution in large buffer regimes, there have been many studied including by de Veciana
and Kesidis (1996), Zhang (1998), Dupuis and Ramanan (1998) and Bertsimas et al. (1999)

Bonald and Proutiére (2004) have defined the monotonicity for the stochastic networks in which each
node serves the units in its queue according to the processor sharing policy. For such networks, they
proposed a method to find two balanced networks whose number of units in each node stochastically
bound upper and lower, respectively, that of given monotonic network. In this paper, we consider
the same problem for the head of the line processor sharing(HLPS) servers. HLPS is a scheduling
algorithm for the server with multiple queues. Under HLPS, the units in the head of the queues
are served simultaneously. The bandwidth allocated to each queue is determined by the numbers of
units in the queues. Clearly, GPS is a type of HPLS. In GPS, the bandwidth allocated to each queue
is determined by the backloggedness of the queues, in stead of the numbers of units in the queues.
The HLPS server with n queues can be treated as a stochastic network with n nodes if we assume
that each queue of the HLPS server is severed by n separated servers. However, the monotonicity
defined by Bonald and Proutiére is not adaptable to the HLPS servers because the units in each
queue are not served by the processor sharing policy. We modify their definition to propose the
monotonicity for HLPS servers, and show that by the method of Bonald and Proutitre (2004), it
can be found the balanced HLPS server whose number of units in each queue stochastically bounds
upper that of a given monotonic HPLS server.

For a given GPS server, we obtain the explicit stationary queue lengths distribution of the balanced
HLPS server bounding upper the GPS server stochastically. We do some numerical studies to check
how tight the stochastic bound is.

2. Generalized Processor Sharing

We consider a queueing system with GPS service policy as shown in Figure 2.1. The number of
classes is denoted by n and each class has its own logical or physical queue. The full bandwidth of
the system is given by C and ¢; is the service ratio of class ¢, for i = 1,2,...,n, where >.7_, ¢; = 1.
The units in the heads of queues are served simultaneously, and the others are waiting to be served.
We assume that each unit is served infinite-divisibly, i.e. it is treated as if it is fluid when served.
Let ¢; = ¢:C and S;(7,t) be the amount of class 7 units served in an interval (7,t). Then, the GPS
system is described by the following two properties (Parekh and Gallager, 1993):

e It is work-conseving, i.e. no bandwidth is allocated to a class with empty queue, and if there
is at least one class with backlogged queue, then the total allocated bandwidth is C.

o If the queue of class ¢ is continuously backlogged in the interval (7,t), then for any j,
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Si(7,t) S G
Sj(Ta t) - cj.

Let 5:(t) be the service rate of class i at time ¢, which is defined as

si{t) = lim M
u—tt+ oy —1

Under the above assumption, if the queue of a class 7 is backlogged at time ¢, we can easily derive
C; C

C}c7
keSy(t)

S; (t) =

where Sy(t) is the set of classes with backlogged queues at time ¢. Clearly, for class i with empty
queue at time ¢,

Above two equations imply that the service rate of a queue is determined by the queue lengths of
all classes, more specifically, the backlog states of all queues. Let the n-dimensional vector L (¢)
denotes the queue lengths, i.e. L¥(t), 4 =1,2,...,n denotes the number of units in the class i’s
queue, or queue i. When L¥(¢) = x, the two equations in the above say that the service rate or
the bandwidth allocated to the queue i by the server X at the time ¢ is given by

ri{x) =0, for z; = 0,
ri{x) = C;C-, for z; > 0. (2.1)
Ck
{kizy >0}

From the second equation in the above, we can see that the bandwidth allocated to a backlogged
queue is not less than ¢;. Wecall ¢;, i = 1,2,...,n, the guaranteed bandwidth of the class i because
the class 7 traffic has the minimum service rate ¢; when the queue 7 is backlogged. Note that the full
bandwidth of the system, C is equal to >0, ci. Since ¢; = ¢;/C fori=1,2,...,n, the guaranteed
bandwidths (ci,cz,...,cn) uniquely define the full bandwidth of the GPS system and its service
ratios.

For the input process to the GPS server, we assume that the units of each class arrive according to
Poisson process. Let A; be the arrival rate of class 4 units, for ¢ = 1,2, ...,n. For different classes,
their arrival processes are assume to be independent. We also assume that the service requirement
of class ¢ units are exponentially distributed with mean i, t=1,2,...,n. The service requirements
of different units are also independent. The input load of the class 4 traffic is given by

p1:/\7,u“ i:1,2,...,n.

Then, the total load of the system is equal to Yo, pi- We assume that )7 | p; < C. Then, all of
the queue lengths processes are stable.

3. Monotonic Head of the Line Processor Sharing Servers

GPS scheduling is a type of HLPS server, which is a scheduling policy for a server with multiple
queues. Under HLPS policy, the units in the head of the queues are served simultaneously. The
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bandwidth allocated to each queue are determined by the numbers of units in the queues. To say
more clearly, we consider a HLPS server Y with n queues. Let LY (¢) be the n-dimensional vector
which denotes the numbers of units in the queues. Suppose that for all n-dimensional nonnegative
integer valued vector y, the bandwidth allocated to the queue ¢ when LY (t) = y is given by
ri(y), 4 = 1,2,...,n. Then, we call the n-dimensional vector r(y) = (r1(y),72(¥),...,7(¥))
the bandwidths vector of the HLPS server Y. In what follows, x and y denote n-dimensional
nonnegative integer valued vectors.

Bonald and Proutiére (2004) have defined the monotonicity for the stochastic networks in which each
node serves the units in its queue according to the processor sharing policy. The HLPS server with
n queues can be treated as a stochastic network with n nodes if we assume that the n queues of the
HLPS server are severed by n separated servers with service rates r1(-),72("), ..., 7n(-), respectively.
However, the monotonicity defined by Bonald and Proutiére is not adaptable to the HLPS servers
because the units in each queue is not served by the processor sharing policy. We modify their
definition to propose the monotonicity for the HLPS servers. For two n-dimensional vectors x and
Yy, x <y denotes that z; < y; for all s. Then, in the HLPS servers, the monotonicity is defined as
follows:

Definition 3.1. A HLPS server Y with the bandwidths vector r(-) is monotonic iff for all x <y,

ri(x) > ri(y), Vi such that z; > 0.

It can be easily checked from Equation (2.1) that a GPS server is monotonic. For the monotonic
HLPS servers Y, and Y; with the same number of the n-queues, the n-dimensional vectors L*(t)
and L”(t) denote the numbers of units in the queues of the severs Y, and Y, respectively, and let
r%(-) and 7°(-) be the bandwidths vectors of Y, and Y, respectively. Suppose that

r(y) >r’(y), Yy

and that the server Y, is monotonic. Then, for any state x < y, it follows from the monotonicity
that
r(x) > r(y).

Then, the condition on the service rates r*(-) and r°(-) gives that
r(x) > r'(y).

If both the servers are given the same sample input process and they are empty at time 0, then the
above inequality says that

L(t) < L°(), t>0.
For any given sample path, the above is valid. When the input processes to the two servers follows
the same law, we obtain the following theorem:

Theorem 3.1.  Suppose that two HLPS servers Y, and Y} have the bandwidths vectors v*(-} and rb(-),
respectively, and that all of the queues of them are empty at time 0. If the server Y, is monotonic
and the input processes to the severs Y, and Y; follow the same low, then

r(y) > (y), Vy= L(t) <. L'(t), t>0.
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4. Stochastic Upper Bound of the Stationary Queue Lengths

In this section, for a monotonic HLPS server X, we find a HLPS server Y such that the stationary
queue lengths distribution has the product form, and that

LYW < LY(t), >0,

if the input processes to the servers X and Y have the same law. To find such a HLPS server Y,
we adopt the method by Bonald and Proutiére (2004). Using the method, for a given stochastic
network of nodes adopting the processor sharing policy, they found the stochastic network whose
queue lengths processes of all nodes stochastically bound upper those of the given network for all
time.

Using the bandwidths vector r(-) of the server X, we define a balance function ®(-} recursively as
follows:

®(0,) =1,
O(x — e;) (41)

2

$(x) = max ————+
{ > iz, >0 T:,(X)
where 0,, is the n-dimensional zero vector and e; is the unit vector with " element being equal
to 1 and others all zero. The value of ®(x) for all possible x can be computed applying the above
equation in a recursive manner. It can be easily checked that ®(x) is well defined. We define ¥ as
a HLPS server with service rate 7(") given by

ﬁ,(x) = O, for €T, = 0,
. (4.2)
'fi(x>:%@€i, for x; > 0.
Let us show that Vx,
?’.’L<x> 2 72'()()7 1= 1~, 27 s T (43)

It follows from Equation (4.1) that

B(x—e) .
> —_ = - .
ri{x) > ey 1=1,2,....n

The latter term in the above inequality is equal to 7;(x) by definition, which gives the Inequal-
ity (4.3). Since the server X is a monotonic HLPS server, we have

LYt < LY (1), t>0, (4.4)

due to Theorem 3.1 when the input processes to the servers X and Y have the same law. At any
time, the number of units in a queue of Y bounds upper that in the corresponding queue of X
stochastically. For the stationary queue lengths, the same result also hold.

The service rates {71(-), P2(-), ..., 7 (")} are ®-balanced, i.c. it satisfies that for j = 1,2,...,n,
O(x) 75{x) = ®(Tjpx) Pr(Tinx), for x such that z; > 0,

where T);% means the vector x — €; + ex. The above equation follows directly from Equation
(4.2). For the details of the ®-balance, refer to Serfozo (1999). Since the HLPS server Y has the
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bandwidths vector which is ®-balanced, the stationary distribution #(x) of {L¥ (¢),t > 0} is given
by the following product form:

#(x) = #(0) ®(x) 1 p; "
where the values of #(0) is obtained by summing & (x) IT{-,p* over all possible x.
Now, we consider the case that X is a GPS server. Without loss of the generality, we assume
c1 < e2 < -+ < ¢, in what follows. Since ri(ke;) = C,k = 1,2,..., it follows from Equation (4.1)
that ®(ke;) = ®((k — 1)e;)/C,k = 1,2, ..., which gives that for i = 1,2,...,n,

1
*0‘;7

Tt is shown in Appendix that for x being the sum of different e;’s

B(ke;) = k=1,2,.... (4.5)

m

m m Zvcik
o <Zl eij> =11 ’“c:’ = | (4.6)

j=1 i

where €;,, €, ..., €e;,, are the elementary vectors with an order such that ¢;;, < ¢, <+ <¢,, and
that for x # 0,
Z Ck z;—1
_ ) keB(x)
ax) =2 > | [I o : (4.7)

JjeB(x) JEB(x)
where B(x) is the set {j;xz; > 0}.
Using the above, we rewrite the stationary distribution #(x) as follows:

pi ¥ VT

#x) =m0)2| Y | [[ o —%’% : (4.8)

JEB(x) JEB(x)

The value of #(0) can be obtained by summing #(x) over all x, whose value is equal to 1. Let S, be
the set of all n-dimensional vectors of nonnegative integers, i.e. the set of all possible queue lengths
states. Then, it follows from the above equation that

pi L a7

o) Y e X o) II » ’“—jfg‘L =1 (4.9)

X€ESy jEB(x) JEB(x)

To obtain the more refined form of #(0), we denote by S, the set of all n-dimensional vectors x
such that z; is 0 or 1. An n-dimensional vector x is in S, iff x has the form x = e;; + -+ + e, for
an m (m > 0), where all e;,’s are different and all ix’s are not larger than n. Then, we have from
the above that

R piciC

7(0) ¢ 1+ ® (x =1. 4.10
© 2,269 11 C—p; > o (4.10)

x€Sy JEB(x) keB(x)

Note that the number of elements in S} is 2" — 1. Thus, the value of 7(0) is calculated without an
approximation, which is the advantage of using the above equation in calculating 7(0) over using
the Equation (4.9).
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The above equation says that 7(x) exists iff p; < ¢, Vi. In other words, the stationary distribution
of ¥ exists iff the input load of class ¢ units is less than the guaranteed bandwidth ¢; for all 4. This
sufficient and necessary condition for the server Y to have the stationary queue lengths distribution
is somewhat restrictive as compared with the corresponding condition for X which is 37 |, p; < C.
This means that we cannot find always such a server Y whose stationary queue lengths bound upper
those of a given GPS server X. However, it is inevitable that the condition for Y is more restrictive
than that for X because the stationary queue length of a queue 7 in Y is stochastically larger than
or equal to that in X for all 4.

A direct consequence of the Equation (4.8) is that we can obtain the upper bound of the probability
Pe{L¥ > zii=1,2,... .1}, where L is the stationary queue length of class ¢ unit in the server
X. It follows from the Equation (4.4) that for a given x,

Pr{Lf 21:71,@':1,2,,..,72} gPr{L}’ zxi,i:1,2,_..,n}}

where LY is the stationary queue length of class ¢ unit in the server Y. Then, the Equation (4.8)
gives

pi 2 a\"
X e € — . i ‘ kEB(y)
Py {Li @i 1,200 7n} < L #(0) L e; H pi | — o
Yiyi2a;.Vi JEB(y) JEB(y)
When all of x;’s are positive, the B(y) in the above inequality is equal to {1,2,...,n}. In this case,

the above inequality can be rewritten as a simpler form, which is given by the following theorem:

Theorem 4.1. Let L¥,i=1,2,...,n, is the stationary queue length of class i unit in the server X.
Then, for positive integer z;, 1 =1,2,....n

’

7% m ) wy—1
{212 o) <sws (o) T12% (%) oy
f J

Jj=1

5. Special Case

In this section, we consider the GPS server X with two classes and p; < ¢; for ¢ = 1,2. Since
ri(z,0) =C, z=1,2,..., it follows from Equation (4.5) that

O(21,0) = E;]T, 1 =1,2,....
In the same manner, we also have
P(0,22) = -}—37 Tp=1,2,....
Cea
For z; > 0 and z2 > 0, the Equation (4.7) gives
1

(1, 12) = .
(@1,22) ez o

From the Equation (4.10), we have

#(0,0) ((I)(0,0) +&(1,0) Cpic;ﬂ + ®(0, 1)%% + ®(1, 1)%%) =1
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From the above equations and ®(0,0) = 1, the value of #(0, 0) is given by

-1

N P1 P2 p1p2C2
0,0)={1+ + .

#0.0) < Copm T C-m " (01—01)(02—92)(3)

For z; and z2 being positive, we have

#(z1,0) = #(0,0) (”1)“,
#(0, 22) = #(0,0) (”2)12,

x1 z9
#(x1, x2) = ‘IAT(O,O)CG2 <5—i) (g—i) .

Then, the above equations give the following bound for the stationary queue lengths of X:

xr1—1 xo—1
Pr{Lf >z, L > 112} < 7(0,0) pipacz (Q) (&) , x1>0,22>0.
(e1 = p1)(ca = p2)C \ 1 c2

which also can be obtained from Theorem 4.1.

6. Numerical Results

In this section, we consider some numerical studies to check how good the result obtained in Section 4
is when it is applied to obtain some upper bounds of interest. GPS system with three classes is
simulated. The arrival rate of each class is equally set to be 0.5, 1.e. A; = 0.5,4 = 1,2,3. The
service requirement of each unit does not depend on the class which the unit belongs to, and it is
exponentially distributed with mean 1. Thus, p; = 0.5, 1+ = 1,2, 3. We consider the following three
cases with different sets of the guaranteed bandwidths:

Case 1: ¢ =1.0,c2 =1.0, ¢35 =1.0.
Case 2: ¢1 =0.8,c2=1.0,c3 =1.2.
Case 3: ¢1 =0.6,¢c2 = 1.0, ¢c3 = 1.4.

In case 1 we treat GPS system with the equal guaranteed bandwidths, in case 2 GPS system with
the different guaranteed bandwidths, and in case 3 GPS system with the very different guaranteed
bandwidths.

Figure 6.1 shows the true value of the probability that the sum of the stationary queue lengths is
larger than given thresholds for the three cases. Let Z(t) be the sum of the queue lengths at time £,
i.e. Z(t) = L1(t) + L2(t) + La(t), where L;(t),7 = 1,2, 3, is the queue length of the class ¢ units in
its queue at time ¢. It is clear that {Z(t),¢ > 0} is a birth-and-death process. The increasing rate
at any state is given by the sum of the arrival rates \;’s, which is equal to 1.5. The work-conserving
property of GPS server says that total bandwidth of the sever is equal to 3 when there is at least
one unit in any queue. This implies that the decreasing rates of {Z(¢),t > 0} at all positive states
are the same as 3 and 0 at the zero state. These increasing and decreasing rates are all the same
for the three different cases. Since the birth-and-death process is uniquely characterized by the
increasing and decreasing rates at each state, the stationary distributions of {Z(¢),t > 0} for the
three cases are the same. We can easily obtain the stationary distribution, given by

Pr{Z > k} = (0.5)""",
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Figure 6.1. True value and the upper bounds on the probability of the sum of the stationary queue lengths being larger than
various thresholds for the three different cases.
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Figure 6.2. Simulation result and the upper bounds on the probability of the stationary queue length of the first class being larger
than various thresholds for the three different cases. The guaranteed bandwidths to each queue vary with the different cases.

where Z is the sum of the stationary queue lengths. True value in Figure 6.1 is obtained from the
above equation. The upper bounds for the three case in Figure 6.1 are obtained from the Equation
(4.8). In the figure we can see that for the case 1, the Equation (4.8) gives a relatively good upper
bound. The ratio of the upper bound to the true value is about 100 or less. However, for the case 3,

the ratio is very huge. Thus, in this case, the upper bound by the Equation (4.8) is very worse.

When we are interested in the stationary distribution of {L;(),t > 0}, we have no explicit formula
for the distribution. Thus, we should rely on the simulation. Figure 6.2 gives the simulation results
on the probability Pr{L, >z}, z =0,2,...,16, where L, is the stationary queue length of the class
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1 units. The corresponding upper bounds, for the three cases, are obtained from the Equation (4.8).
We can see the similar behavior of the upper bounds to the above. For the case 1, the Equation
(4.8) gives a relatively good upper bound, while for the case 3, the upper bound by the Equation
(4.8) is very worse.

Appendix

In Appendix, we give the derivation of (4.6) first, and then (4.7). Equation (4.5) says that ®(e;) =
1/C,i = 1,2,...,n. Thus, the Equation (4.6) is valid when x = e; for an i. Suppose that the
Equation (4.6) is valid for all x which is the sum of m — 1(1 < m < n) different e;’s. Let x =
€ip + -+ e, wWith ey <y <000 < ¢, From the Equation (4.6), we can see that ®(x —e;;), j =
1,2,...,m, has its maximum value at j = 1, i.e.

m
m Z cik

P(x—e )= H 2
J:{I,laf(um A ci; C

Moreover, 7:;(x) = ¢;;C/377, ¢;; has its minimum value at j = 1. Thus, it follows from the
Equation (4.1) that

m kE_ Cig,
o(x) = ~ .
jl_:Il Cij C

Now, by induction, we have shown that the Equation (4.6) is valid for all m = 1,2,...,n.

We also show the Equation (4.7) for x # 0 by induction. When x is the sum of different e;’s, z; = 1
for all j € B(x). Thus, the Equation (4.7) is valid by definition in this case. For a given x such
that at least one of x; is larger than 1, we assume that for all y € {y;y < x and y # x}, ®(y) is
given by the Equation (4.7). For ¢ with x; > 0, r;(x) is given by ¢; C/ 2 keB(x) Ck- Then, we have
that for i such that z; > 0,

Z ck Z ch (Tyx);—1
P(x —e;) kEB(x) kEB(T;x)
- d , - . Al
m(x) Cic . Z € . H CjC ( )
JEB(T;x) FJEB(T;x)

where Tix = x — e; and its j'" element is denoted by (Tix);. If z; > 1, then B(Tix) = B(x) and
(Tix); = z; for all § # i. Then, the above equation is rewritten as

B(x - e) Zo\"
X&) _ ‘ k€ B(x) ) _
rx) @ Z €; H _—Cj ol , i such that z; > 1. (A.2)

JEB(x) JEB(x)

The right hand side of the above equation does not depend on 3. If z; = 1, then the difference of
the sets B(x) and B(Tix) is {i} and (Tix); = x; for all j # 4. Thus, we have

Z Cr (Tix)j—l E cr zj—1
kEB(T;x) . kE€B(T;x)
H c;C N H c;C

J€B(T;x) j€B(x)
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Since ), B(Tx) Ck is less than Zke B(x) %> the above equation gives

e (Tyx) ;1 ch i1
ke B(T;x) ke B(x)
1 | —c < Il | =&
JEB(Ti) &C sento | 9C
Moreover, it follows from the Equation (4.1) that
> ok
ke B(x}
—o |18l X elsel X e
JEB(Tyx) JEB(x)
Applying the above two equations to the Equation (A.1) yields
Z ek x4
B(x —e;) kEB(x) . _
) <@ Z e; H e , isuch that z; = 1. (A.3)

JEB(x) JEB(T;x)

Since ®(x) is given by maxi.., >0 P(x — e;)/r;(x) and x is such a vector that at least one of z; is
larger than 1, the Equations (A.2) and (A.3) completes the proof.
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