Abstract
In Korea, the ITS project has been progressed to improve traffic mobility and safety. Further, it is to relieve traffic jam by supply real time travel information for drivers and to promote traffic convenience and safety. It is important that the traffic information is provided accurately. This study was conducted outlier elimination and missing data adjustment to improve accuracy of raw data. A method for raise reliability of travel time prediction information was presented. We developed Historical Profile model and adjustment formula to reflect quality of interrupted flow. We predicted travel time by developed Historical Profile model and adjustment formula and verified by comparison between developed model and existing model such as Neural Network model and Kalman Filter model. The results of comparative analysis clarified that developed model and Karlman Filter model similarity predicted in general situation but developed model was more accurate than other models in incident situation.
현재 국내에서는 지역간 교통의 이동성 및 안전성을 향상시키기 위해 국도를 대상으로 ITS사업을 추진중에 있다. 이러한 ITS 사업을 통해 교통정보를 이용자에게 실시간으로 제공해 줌으로써 기존의 교통시설의 이용을 극대화 하는데 목적을 두고 있다. 이러한 정보 제공시 운전자에게 보다 정확한 통행시간정보를 제공해 주는것이 가장 중요하므로 본 연구에서는 자료의 전처리를 통해 원시데이터의 이상치 제거 및 결측처리를 실시하였다. 이를 통해 통행시간 예측의 기본이 되는 원시데이터의 정확성을 향상시켜 정보의 신뢰도를 높일 수 있는 방안을 모색하였다. 그리고 통행시간 예측을 위해 단속류 도로의 특성을 보다 정확히 반영할 수 있는 히스토리컬 프로파일 모형을 구축하였으며 실제 교통류의 특성을 적극적으로 반영하기 위해 보정식을 개발하였다. 따라서 제안된 모형과 히스토리컬 프로파일 모형과 보정식을 통해 통행시간을 예측한 후 기존의 방식인 신경망 모형, 칼만필터 모형과의 비교검증을 실시하였다. 결과적으로 일반적인 상황에서는 칼만필터 모형과 비슷한 예측력을 보였으나, 첨두시나 유고상황에서는 개발모형이 실제 교통흐름을 상대적으로 정확히 반영하여 예측을 수행함을 확인하였다.