DOI QR코드

DOI QR Code

Improved Bioethanol Production Using Activated Carbon-treated Acid Hydrolysate from Corn Hull in Pachysolen tannophilus

  • Seo, Hyeon-Beom (Division of Food and Biotechnology, Chungju National University) ;
  • Kim, Seung-Seop (Division of Biomaterials Engineering, Kangwon National University) ;
  • Lee, Hyeon-Yong (Division of Biomaterials Engineering, Research Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Jung, Kyung-Hwan (Division of Food and Biotechnology, Chungju National University)
  • Published : 2009.06.30

Abstract

To optimally convert corn hull, a byproduct from corn processing, into bioethanol using Pachysolen tannophlius, we investigated the optimal conditions for hydrolysis and removal of toxic substances in the hydrolysate via activated carbon treatment as well as the effects of this detoxification process on the kinetic parameters of bioethanol production. Maximum monosaccharide concentrations were obtained in hydrolysates in which 20 g of corn hull was hydrolyzed in 4% (v/v) $H_2SO_4$. Activated carbon treatment removed 92.3% of phenolic compounds from the hydrolysate. When untreated hydrolysate was used, the monosaccharides were not completely consumed, even at 480 h of culture. When activated carbon.treated hydrolysate was used, the monosaccharides were mostly consumed at 192 h of culture. In particular, when activated carbon-treated hydrolysate was used, bioethanol productivity (P) and specific bioethanol production rate ($Q_p$) were 2.4 times and 3.4 times greater, respectively, compared to untreated hydrolysate. This was due to sustained bioethanol production during the period of xylose/arabinose utilization, which occurred only when activated carbon-treated hydrolysate was used.

Keywords

References

  1. Agbogbo, F. K. and Wenger, K. S. 2007. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. J. Ind. Microbiol. Biotechnol. 34:723-727. https://doi.org/10.1007/s10295-007-0247-z
  2. Aguilar, R., Ramirez, J. A., Garrote, G. and Vazquez, M. 2002. Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Eng. 55:309-318. https://doi.org/10.1016/S0260-8774(02)00106-1
  3. Asada, C., Yoshitoshi, N. and Kobayashi, F. 2005. Chemical characteristics and ethanol fermentation of the cellulose component in autohydrolyzed bagasse. Biotechnol. Bioprocess Eng. 10:346-352. https://doi.org/10.1007/BF02931853
  4. Baek, S.-C. and Kwon, Y.-J. 2007. Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol. Bioprocess Eng. 12:404-409. https://doi.org/10.1007/BF02931063
  5. Baek, S. W., Kim, J. S., Park, Y. K., Kim, Y. S. and Oh, K. K. 2008. The Effect of sugar decomposed on the ethanol fermentation and decomposition reactions of sugars. Biotechnol. Bioprocess Eng. 13:332-341. https://doi.org/10.1007/s12257-007-0161-2
  6. Bustos, G., Ramirez, J. A., Garrote, G. and Vazquez, M. 2003. Modeling of the hydrolysis of sugar cane vagase with hydrochloric acid. Appl. Biochem. Biotechnol. 104:51-68. https://doi.org/10.1385/ABAB:104:1:51
  7. Bustos, G., Ramirez, J. A., Garrote, G. and Vazquez, M. 2003. Modeling of the hydrolysis of sugar cane vagase with hydrochloric acid. Appl. Biochem. Biotechnol. 104:51-68. https://doi.org/10.1385/ABAB:104:1:51
  8. Carvalheiro, F., Duarte, L. C., Lopes, S., Parajo, J. C., Pereira, H. and Girio, F. M. 2005. Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem. 40:1215-1223. https://doi.org/10.1016/j.procbio.2004.04.015
  9. Chandel, A. K., Kapoor, R. K., Singh, A. and Kuhad, R. C. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98:1947-1950. https://doi.org/10.1016/j.biortech.2006.07.047
  10. Chaplin, M. F. and Kennedy, J. F. 1986. Carbohydrate analysis; A practical approach. pp 3. IRL Press, Oxford
  11. Chen, M., Xia, L. and Xue, P. 2007. Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int. Biodeterior. Biodegrad. 59:85-89. https://doi.org/10.1016/j.ibiod.2006.07.011
  12. Dale, B., Leong, C., Pham, T., Esquivel, V., Rios, I. and Latimer, V. 1996. Hydrolysis of lignocellulosics at low enzyme levels:application of the AFEX process. Bioresour. Technol. 56:111-116. https://doi.org/10.1016/0960-8524(95)00183-2
  13. Demirbas, A. 2007. Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33:1-18. https://doi.org/10.1016/j.pecs.2006.06.001
  14. Gamez, S., Gonzalez-Cabriales, J. J., Ramirez, J. A., Garrote, G. and Vazquez, M. 2006. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J. Food Eng. 74:78-88. https://doi.org/10.1016/j.jfoodeng.2005.02.005
  15. Gaspar, M., Kalman, G. and Reczey, K. 2007. Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem. 42:1135-1139. https://doi.org/10.1016/j.procbio.2007.04.003
  16. Georgieva, T. I. and Ahring, B. K. 2007. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl. Microbiol. Biotechnol. 77:61-68. https://doi.org/10.1007/s00253-007-1149-8
  17. Grohmann, K. and Bothast, R. 1997. Saccharification of cornfibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem. 32:405-415. https://doi.org/10.1016/S0032-9592(96)00095-7
  18. Gulati, M., Kohlmann, K., Ladisch, M., Hespell, R. and Bothast, R. 1996. Assessment of ethanol production options for cornproducts. Bioresour. Technol. 58:253-264. https://doi.org/10.1016/S0960-8524(96)00108-3
  19. Hamelinck, C. N., van Hooijdonk, G. and Faaij, A. P. C. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
  20. Herrera, A., Tellez-Luis, S. J., Ramirez, J. A. and Vazquez, M. 2003. Production of xylose from sorghum straw using hydrochloric acid. J. Cereal Sci. 37:267-274. https://doi.org/10.1006/jcrs.2002.0510
  21. Hespell, R. B. 1998. Extraction and characterization of hemicellulose from the corn fiber produced by corn wet-milling processes. J. Agric. Food Chem. 46:2615-2619. https://doi.org/10.1021/jf971040y
  22. Karimi, K., Emtiazi, G. and Taherzadeh, M. J. 2006a. Ethanol production from dilute-acid pretreated rice straw by simulta-neous. saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 40:138-144. https://doi.org/10.1016/j.enzmictec.2005.10.046
  23. Karimi, K., Kheradmandinia, S. and Taherzadeh, M. J. 2006b. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenergy. 30:247-253. https://doi.org/10.1016/j.biombioe.2005.11.015
  24. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G. and Nilvebrant, N.-O. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24:151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
  25. Lau, M. W., Dale, B. E. and Venkatesh, B. 2008. Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol. Bioeng. 99:529-539. https://doi.org/10.1002/bit.21609
  26. McDonald, S., Prenzler, P. D., Antolovich, M. and Robards, K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chem. 73:73-84. https://doi.org/10.1016/S0308-8146(00)00288-0
  27. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96:673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  28. O'Brien, D. J., Senske, G. E., Kurantz, M. J. and Craig, J. C. Jr. 2004. Ethanol recovery from corn fiber hydrolyzate fermentations by pervaporation. Bioresour. Technol. 92:15-19 https://doi.org/10.1016/j.biortech.2003.08.003
  29. Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hagerdal, B. and Zacchi, G. 2006a. Simultaneous saccharification and co-fermentation of glucose and xylose in steampretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J. Biotechnol. 126:488-498. https://doi.org/10.1016/j.jbiotec.2006.05.001
  30. Ohgren, K., Rudolf, A., Galbe, M. and Zacchi, G. 2006b. Fuelethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30:863-869. https://doi.org/10.1016/j.biombioe.2006.02.002
  31. Palmqvist, E. and Hahn-Hagerdal, B. 2000a. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol. 74:17-24. https://doi.org/10.1016/S0960-8524(99)00160-1
  32. Palmqvist, E. and Hahn-Hagerdal, B. 2000b. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74:25-33. https://doi.org/10.1016/S0960-8524(99)00161-3
  33. Qu, Y., Zhu, M., Liu, K., Bao, X. and Lin, J. 2006. Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol. J. 1:1235-1240. https://doi.org/10.1002/biot.200600067
  34. Saha, B. C., Dien, B. S. and Bothast, R. J. 1998. Fuel ethanol production from corn fiber: current status and technical prospects. Appl. Biochem. Biotechnol. 70-72:115-125. https://doi.org/10.1007/BF02920129
  35. Saha, B. C., Iten, L. B., Cotta, M. A. and Wu, Y. V. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40:3693-3700. https://doi.org/10.1016/j.procbio.2005.04.006
  36. Sanchez, O. J. and Cardona, C. A. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99:5270-5295. https://doi.org/10.1016/j.biortech.2007.11.013
  37. Schell, D. J., Riley, C. J., Dowe, N., Farmer, J., Ibsen, K. N., Ruth, M. F., Toon, S. T. and Lumpkin, R. E. 2004. A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour. Technol. 91:179-188. https://doi.org/10.1016/S0960-8524(03)00167-6
  38. Vazquez, M. J., Alonso, J. L., Dominguez, H. and Parajo, J. C. 2006a. Enhancing the potential of oligosaccharides from corncob autohydrolysis as prebiotic food ingredients. Ind. CropsProd. 24:152-159.
  39. Vazquez, M., Oliva, M., Tellez-Luis, S. J. and Ramirez, J. A. 2007b. Hydrolysis of sorghum straw using phosphoric acid: Evaluation of furfural production. Bioresour. Technol. 98: 3053-3060. https://doi.org/10.1016/j.biortech.2006.10.017
  40. Yang, Z., Zhang, B., Chen, X., Bai, Z. and Zhang, H. 2008. Studies on pyrolysis of wheat straw residues from ethanol production by solid-state fermentation. J. Anal. Appl. Pyrolysis 81: 243-246. https://doi.org/10.1016/j.jaap.2007.12.001

Cited by

  1. Production of fermentable sugars by combined chemo-enzymatic hydrolysis of cellulosic material for bioethanol production vol.31, pp.2, 2014, https://doi.org/10.1590/0104-6632.20140312s00002415