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ABSTRACT

In this paper we present an independent FORTRAN code for calculating LTE-plane-parallel model
atmospheres. The transfer equation has been solved using Avrett and Loeser method. It is shown that,
using an approximate non-gray temperature distribution together with the iteration factors method
(Simonneau and Crivellari) for correcting the temperature distribution reduce the number of iteration
required to achieve the condition of radiative equilibrium. Preliminary results for pure helium model
atmospheres are presented.
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I. INTRODUCTION

Stellar atmospheres can be considered as laborato-
ries of plasma physics, in which the atomic parameters
can be tested. Also the mathematical methods devel-
oped in stellar atmospheres can be widely used in many
other problems in astronomy (Mihalas, 1978).

In astrophysics, one of the importance of modelling
stellar atmosphere is that it provides an adequate sur-
face boundary condition for the computation of evolu-
tionary stellar models. Besides, the atmosphere models
are necessary to determine the emergent flux from the
star, which is required to interpret the luminosities and
colors of observed stellar spectra.

Two alternative approaches are possible for a numer-
ical solution of the problem of modelling stellar atmo-
sphere; a global approach (e.g. complete liberalization)
and iterative methods.

In the 1970s two basic categories of model atmo-
spheres were developed: the LTE line-blanketed models
of Kurucz (1979), and the non-LTE models pioneered
by Auer & Mihalas (1972). Discussion of more develop-
ments could be found in Kudritzki (1988) and Hubeny
(1997).

Although ATLAS code (Kurucz , 1979) shears with
our code in static plane-parallel, LTE and radiative
equilibrium conditions, our code is different from AT-
LAS in two situations, the temperature correction pro-
cedure and the integration scheme of the flux and mean
intensity integrals.

For temperature correction algorithm we imple-
mented Simonneau and Crivellari (1988) method, while
the analytical expressions by Klinglesmith (1967) are
adopted for the solution of the flux and mean intensity
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integrals.
The aim of the present paper is to carry out various

calculations of LTE-plane parallel model atmospheres
using an independent FORTRAN code. Preliminary re-
sults for pure helium model atmospheres are presented
and compared with previous work.

The organization of the paper is as follows: Section
2 deals with the formulation of the basic equations,
Section 3 devoted to the computational procedure and
numerical methods used to compute models, Section
4 presents the whole procedure in a stepwise fashion,
finally the results and conclusion reached are given in
Section 5.

II. BASIC EQUATIONS

In the present paper we assume that the atmo-
sphere is plane-parallel (pp) and in local thermody-
namic equilibrium (LTE). It has two input parameters
which characterize the atmosphere, the effective tem-
perature, Teff and the logarithm of the surface gravity
log g.

To construct model atmospheres (concerning the
above assumptions), a set of equations must be solved,
these equations are:

• The hydrostatic equilibrium equation which de-
termines the gas pressure pg.

• The electron-temperature relation, determining
the electron pressure, pe.

• The radiative transfer equation which are solved
for the mean intensity integral, Ji, flux integral,
Fi, i = 1, ....NF on a pre-chosen frequency grid
comprising NF points.

• The radiative equilibrium for which the tempera-
ture follows.
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This set of equations has to be solved at each point d
of a grid comprising ND depth points. In the follow-
ing, the basic equations needed for constructing model
atmosphere will be formulated .

(a) Hydrostatic Equilibrium

We use the hydrostatic equilibrium equation in the
form

d log Pg

dτ
=

1
2.302585Pg

(
g

(kν + σν)s
− dPr

dτ
), (1)

where Pg is the gas pressure, g the surface gravity, kν

and σν are the mass absorption coefficient and the scat-
tering coefficient at frequency ν, Pr the radiation pres-
sure. The subscript s denotes the opacity determined
at a standard frequency (s) (4000 Å for the present
calculations) and dpr/dτ is given by

dpr

dτ
=

π

c

∞∫

0

kν + σν

(k + σ)s

Fνdν. (2)

(b) Radiative Transfer

The transfer equation in plane-parallel geometry
could be written as

µ
dIν

dτν
= Iν − Sν , (3)

where µ = cos θ, dτν = −(kν +σν)ρdz, θ, Iν and Sν are
the angle of the emergent radiation relative to the nor-
mal to the star surface, specific intensity and source
function at frequency ν respectively. The formal so-
lution of Equation (3) gives the full intensity at the
position τν as

Iν(τν) =
∫ ∞

τν

Sν(tν) e−(tν−τν)/µ dtν/µ

−
∫ τν

0

Sν(tν) e−(tν−τν)/µ dtν/µ. (4)

After some manipulations the monochromatic flux at
each optical depth has the form

Fν(τν) = 2π

∞∫

τν

SνE2(tν − τν)dtν

−2π

τν∫

0

SνE2(τν − tν)dtν , (5)

and the mean intensity is given by

Jν(τν) =
1
2

∞∫

0

SνE1(|tν − τν |)dtν (6)

where the exponential integral (En(t)) is given by

En(t) =
∫ ∞

1

e−tx

xn
dx =

∫ 1

0

e−t/µ µn−2 dµ (t > 0). (7)

(c) Source Function

Concerning LTE, the source function with thermal
emission plus an isotropic coherent scattering compo-
nent has the form

Sν(τν) =
kν

kν + σν
Bν(τν) +

σν

kν + σν
Jν(τν), (8)

and if we introduce,

εν(τν) =
σν

kν + σν
, (9)

then the source function becomes

Sν(τν) = (1− εν(τν))Bν(τν) + εν(τν)Jν(τν), (10)

where Bν(τν) is the monochromatic Planck function.

(d) Radiative Equilibrium and Temperature
Correction

Following the procedures outlined in the previous
sections, the physical variables (Pg, Pe, kν , σν) and the
radiation field (Fν , Jν) have been calculated. The next
step is to examine whether the model satisfies the con-
dition of the radiative equilibrium or not. The radiative
equilibrium condition in the form

F (τ) =

∞∫

0

Fνdν =
σT 4

eff

π
= constant, (11)

implies that the integrated flux F (τ) remains constant
as τ =⇒ 0. To achieve this condition we must im-
prove the temperature structure of the model. For this
purpose we adopt Simonneau and Crivellari (1988) pro-
cedure which could be outlined in the following para-
graphs.

An alternative form of the condition of radiative
equilibrium can be written as

4π

∞∫

0

χν [Jν(τ)− Sν(τ)]dν = −Q(τ), (12)

where χν = kν + σν and Q(τ) = 0 if the condition is
fulfilled exactly, in this method Q(τ) express the de-
parture from radiative equilibrium.

The new temperature follows from the equation

T 4(τ) =
π α(τ) J(τ)

σR
+

Q(τ)
4 σR aP (τ)

, (13)

where,

α(τ) ≡ aJ (τ)/aP (τ), (14)

aP (τ) ≡
∞∫

0

kν(τ)Bν(τ)dν/

∞∫

0

Bν(τ)dν, (15)
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aJ (τ) ≡
∞∫

0

kν(τ)Jν(τ)dν/

∞∫

0

Jν(τ)dν, (16)

J(τ) is the integrated mean intensity and σR is the
Stefan-Boltzman constant.

III. COMPUTATIONAL METHODS

(a) Model Calculation

i) Initial Values

To start the integration of the model we need the
initial value of the gas pressure at the surface, so that
we take T = Tgo ( Tgo is the grey boundary tempera-
ture ) and the initial value of the electron pressure is
adopted as (Mihalas, 1967)

(log Pe)0 = −2.9 + 0.85 log g − 1.2θ0, (17)

where θ0 = 5040
Tg0

. Consequently log Pg is computed
using the formula (Mihalas, 1978),

log Pg = log Pe + log


1 +

∑
αi∑

i

αi

∑
j

jfij


 , (18)

where, j is the stage of ionization, αi is the abundance
of the element i and fij is given by

fij =
∏j

k=0 φk∑i
k=0

∏k
i=0 φir

where φ is known as Saha equation.
The initial value of the optical depth is computed

using the hydrostatic equation in the form

dτ

d log Pg
=

2.302585Pg
g

(kν+σν)s
− dPr

dτ

, (19)

which could be solved using Rung-Kutta method .
Following the procedure mentioned above, kν (θ0, Pe),
σ (θ0, Pe) and Pg (θ0, Pe) (θ0 = 5040/Tg0) at the start-
ing optical depth will be determined.

ii) Physical Variables

After having the initial values required for integrat-
ing the model, the integration have been continued us-
ing Equation (1) with the approximate non-grey tem-
perature distribution adopted by Hasegawa and Uesugi
(1967) given by

T 4(τ) =
3
4
T 4

eff (1− 1
c
) log(2eτ − 1) + T 4

g (τ), (20)

T 4
g (τ) =

3
4
T 4

eff [τ + q(∞)], (21)

c = αg/α, αg =
√

3/4, α = T 4
g /Teff , q(∞) = 0.710446.

Having the run of the physical variables as a function
of the optical depth, we can compute tables of kν and

σν

kν+σν
at each depth for each frequency to be considered

in the solution of the transfer equation. Now we can
establish the optical depth scale at each frequency from
the expression

τν (τ) =
∫ τ

0

kν (t) + σν (t)
[kν (t) + σν (t)]s

dt, (22)

which is carried out by numerical integration.

(b) Solution of the Transfer Equation

As a result of having the opacities and optical depths
at each frequency, we are in the situation which enables
us to solve the equation of transfer. In our code we fol-
low the method adopted by Avrett and Loeser ( 1963).
The source function is approximated by an interpo-
lation formula that is valid between discrete points .
Then the integral equation can be reduced to a set
of linear algebraic equations, which may be solved by
standard numerical methods.

If the source function can be represented by a series
of equations

S (τj) =
N∑

i

aifi (τj) , (23)

then inserting Equation (8) into Equation (23) and ar-
ranging the terms we get,

N∑

i

ai


fi (τj)− εj

2

∞∫

0

fi (t)E1 |τj − t| dt




= (1− εj)B (τj) , (24)

which may be solved for the ai’s. The quantities
Sν , Jν , Fν could be computed from the expressions,

Sν(τj) =
N∑
i

aiGFi (τj) ,

Jν(τj) =
N∑
i

aiGJi (τj) ,

Fν(τj) =
N∑
i

aiGHi (τj) .

(25)

Following Avrett and Loeser (1963) the function GFi

is given by

GF1 (x) = 1 ,

GFi (x) =




(1− x
xi

)(1− λx
xi

), 0 ≤ x ≤ xi

0, x > xi, i = 2, 3, ... (n− 1)


 ,

GFn (x) = x,

(26)
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where 0 ≥ λ ≤ 1.
With this choice of GFi, the quantities GJi and GHi

have the form

GJi (τj) =
1
2

∞∫

0

fi (t)E1 (|τj − t|) dt, (27)

and

GHi (τj) =
1
2

∞∫

τj

fi (t)E2 (t− τj) dt

−1
2

τj∫

0

fi (t) E2 (τj − t) dt. (28)

We have examined several methods for computing GJi

and GHi. From these comparisons using the grey
source function

S = 3 [τ + q (τ)] , (29)

we found that the analytic expressions provided by
Klinglesmith ( 1967), after some necessary corrections
are the most accurate one (improved expression would
be found in Appendix).

At this stage we have obtained the source function,
mean intensity and flux integral at each frequency for
each optical depth.

(c) Computational Algorithm

In what follows, a computational algorithm for
model atmosphere calculation will be established.

• Input : Teff , log g.
• Computational Sequence :

1. Compute the surface temperature using Equa-
tion (20).

2. Compute the starting optical depth using
Equation (19).

3. Compute the starting physical parameters
(Pg)0, (Pe)0 using Equations (17) and (18).

4. Integrate Equation (1) to compute Pg at the
selected optical depth τ .

5. Compute tables of kν and σν/(kν + σν).
6. Integrate Equation (22) to compute the monochro-

matic optical depth.
7. Compute the monochromatic flux and mean

intensity from Equations (26).
8. Test the radiative equilibrium condition using

Equation (11).
9. If the previous condition is satisfied the model

converge, if not go to step 10.
10. Compute the new temperature structure us-

ing Equation (13) and go to step 4.
• The algorithm is completed.

Table 1.
Parameters of the computed models, all

models are pure Helium.

Models Teff (K) log g
Model I 25000 6
Model II 30000 6
Model III 30000 4

Table 2.
The ratio T0

Teff

Teff log g T0
Teff

25000 6 0.6547
30000 6 0.6180
30000 4 0.6399

IV. RESULTS AND DISCUSSION

Following the method of computation described
above, three models were computed with the param-
eters listed in Table 1.

The calculation will concerned only for the pure he-
lium atmosphere. We consider only bound-free and
free-free transitions of HeI and HeII and Thompson
electron scattering. Line blanketing, which is due
mainly to the resonance line λ 504 Å of HeI is neglected
as well as the Raleigh scattering.

(a) Temperature Depth Relationship

After altering the temperature distribution to obtain
the flux constancy, the form of the temperature-depth
relation now has some interest. First the ratio T0/Teff

(the surface temperature to the effective temperature
ratio) has been altered due to the iteration (the ratio
for the grey case is 0.811). The results obtained from
the models are given in Table 2.

We see from the table the pronounced deviation from
the grey ratio. The condition of the radiative equilib-
rium implies that the integrated flux,

∫ ∞

0

dν

∫ ∞

τν

Sν (τν)E2 |τν − t| dτν

−
∫ ∞

0

dν

∫ τν

0

Sν (τν)E2 |t− τν | dτν , (30)

remains constant as τ ⇒ 0. As τ increases by small
amounts, it is evident from the above equation that ra-
diative equilibrium in the outer parts of the atmosphere
could be achieved with considerable drops in the tem-
perature at τ ⇒ 0. This is because the helium opacity
in the outer layers is highly depending on frequency,
where the main contribution to it is the true absorp-
tion i.e. the atmosphere in these regions is non-grey.
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Fig. 1.— Temperature depth relation for Model I.

This could be clearly noticed from the results obtained
and represented in Figures 1, 2 and 3, the part labelled
1 in the figures.

On the other hand when τ increases considerably,
the first integral in Equation (30) becomes too large
leading to an increase in the integrated flux F (τ), while
the second integral is strongly affected causing marked
decrease in F (τ). At these large optical depths, where
the temperatures are very high, the main contribution
to the opacity is the scattering, i.e. it is independent
of frequency, then the atmosphere in this region is a
grey one. The final result confines in a small change in
temperature, the part labelled 2 in the figures.

(b) UBV Colors

To compute U-B, B-V and the bolometric correction
for the energy distribution of the models we proceed as
follows:

• By using the filter function (S(λ)) published by
Matthews and Sandage (1963) and the emergent
monochromatic flux (F (λ)), we compute u-b, b-v
from the expressions,

u− b = −2.5log

∫∞
0

Sb (λ)F (λ) dλ∫∞
0

Su (λ)F (λ) dλ
, (31)

and

v − b = −2.5log

∫∞
0

Sv (λ) F (λ) dλ∫∞
0

Sb (λ)F (λ) dλ
, (32)
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Fig. 2.— Temperature depth relation for Model II.

Table 3.
Colors and Bolometric corrections of the

models

Teff log g U-B B-V B.C
25000 6 -1.0882 -0.229 -3.506
30000 6 -1.1237 -0.269 -3.369
30000 4 -1.1333 -0.278 -3.296

• Compute (U-B) and (B-V) by using the following
equations:

U −B = 0.921(u− b)− 1.308, (33)
B − V = 1.024(b− v) + 0.81. (34)

• The bolometric correction could be given by

B.C = 2.5log

∫∞
0

F (λ)SV (λ) dλ∫∞
0

F (λ) dλ
+ C1 , (35)

where C1 = 0.95± 0.01 mag (Code et al, 1976).
The (U − B), (B − V ), and B.C for each model

is tabulated in Table 3.As we see from the table the
dependence on the temperature is clear but the depen-
dence on the gravity is slight.

The model with Teff = 30000 and log g = 4 is com-
pared with the main sequence model of Mihalas and the
model of pure helium produced by Klinglismith (1967)
at the same parameters. The comparison is shown in
Table 4.and reveals a good results.
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Fig. 3.— Temperature depth relation for Model III.

Table 4.
Comparison of colors for Model III

Model U-B B-V
Mihalas -1.15 -0.29

Klinglismith -1.11 -0.29
Model III -1.13 -0.28

V. CONCLUSION

As a summarization of the paper, we elaborated
an independent FORTRAN code for calculating LTE-
plane-parallel model atmospheres.

The transfer equation has been solved using Avrett
and Loeser method. It is shown that, using an approx-
imate non-gray temperature distribution together with
the iteration factors method (Simonneau and Crivel-
lari, 1988) for correcting the temperature distribution
reduce the number of iteration required to achieve the
condition of radiative equilibrium. The computational
procedure used is discussed in a stepwise fashion to
clarify the code.

Preliminary results for pure helium model atmo-
spheres are presented. Three models have been com-
puted to test the physical properties of the atmo-
spheres. Application to the line blanketing model at-
mospheres will be followed in a series of papers.
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Appendix: An Improved Analytic Expressions
for the GJ and GH Matrices

The analytic expressions suggested by Klinglesmith
(1967) will be treated in the following manner. From
the nature of the Avrett parabolas there are four cases
that need to be considered in computing the GJ and
GH matrices. The general expression can be written
as

Gk(i, τj) =
1
2

∫ ∞

τj

fi(t)Ek(t− τj)dt

+(−1)k+1 1
2

∫ τj

0

fi(t)Ek(τj − t)dt

where k = 1 implies GJ and k = 2 implies GH

The four cases are:
I: i = 1 and all j
II: i = N and all j
III: j < i
IV: j ≥ i
The resultant four expressions are:
Case I:

Gk(1, τj) =
1
2

∫ ∞

τj

Ek(t− τj)dt

+(−1)k+1 1
2

∫ τj

0

Ek(τj − t)dt

Case II:

Gk(N, τj) =
1
2

∫ ∞

τj

tEk(t− τj)dt

+(−1)k+1 1
2

∫ τj

0

tEk(τj − t)dt

Case III:

Gk(i, τj) =
1
2

∫ τj

∞
H Ek(t− τj)dt

+(−1)k+1 1
2

∫ τj

0

H Ek(τj − t)dt,

where

H = (1− t

ti
)(1− λt

τj
).

Case IV:

Gk(i, τj) = (−1)k+1 1
2

∫ τj

0

H Ek(τj − t)dt

The limits on Case III and Case IV are a result of the
fact that for j ≥ 1, fi(τj) = 0. By making a trans-
formation of variables so that the argument of the ex-
ponential integral is the integration variable, these ex-
pressions can be integrated easily. The transformation

for t− τj is

x = t− τj ,

dx = dt,

t = x + τj .

The transformation for τj − t is

y = τj − t,

dy = −dt,

t = τj − y.

Since at worst fi(τj) is a parabola there are three types
of integrals that need to be considered:
∫

Ek (x) dx = −Ek+1 (x)∫
xEk (x) dx = − [xEk+1 (x) + Ek+2 (x)]∫
x2Ek (x) dx = − [

x2Ek+1 (x) + 2xEk+2 (x) + 2Ek+3

]

After making the transformations of variables and ar-
ranging the terms in powers of the integration variable,
the four cases become
Case I:

Gk (1, τj) =
1
2

∫ ∞

τj

Ek (t− τj) dt

+(−1)k+1 1
2

∫ τj

0

Ek (τj − t) dt

Case II:

Gk (1, τj) =
1
2

∫ ∞

τj

(τj + x) Ek (x) dx

+(−1)k+1 1
2

∫ τj

0

(τj − y)Ek (y) dy

Case III:

Gk(i, τj) =
1
2

∫ (τi−τj)

0

Q1 Ek(x)dx +

(−1)k+1 1
2

∫ τj

0

Q2 Ek(y)dy

where

Q1 = 1− 1 + λ

τi
τj +

λτ2
j

τ2
i

+ [
λ− 1

τi
+

2λτj

τi
]x +

λ

τ2
i

x2,

and

Q2 = 1− 1 + λ

τi
τj +

λτ2
j

τ2
i

+ [
1 + λ

τi
− 2λτj

τi
]y +

λ

τ2
i

y2.

Case IV:

Gk(i, τj) = (−1)k+1 1
2

∫ (τj−τi)

τj

Q2 Ek(y)dy
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The results of these integrations for λ = 1 give:
Case I:

G1 (1, τj) = GJ1J = 1− 1
2
E2 (τj)

G2 (1, τj) = GH1J =
1
2
E3 (τj)

Case II: i = 1 for all j

G1 (N, τj) = GJN,J = τj +
1
2
E3 (τj)

G2 (N, τj) = GHN,J =
1
3
− 1

2
E4 (τj)

Case III: j < i

G1(i, τj) = GJi,j = Q3
1
τi

E3(τj)− 1
τ2
i

E4(τi − τj)

+E4(τj) +
1
2
E3(τi)− 1

2
E2(τj)

where

Q3 = 1− 2τj

τi
+

1
τ2
i

[τ2 +
2
3
],

and

G2 (i, τj) = GHi,j =
1
2
E3 (τj) +

1
τi

E4 (τj) +

1
τi

E5 (τj)
[
−E5 (τj − τi) +

2τj

3τi

]
− 2

3τi

Case IV: j ≥ i

G1 (i, τj) = GJi,j = 1
2E2 (τj) + 1

τ E3 (τj)−
1
2 [E4 (τj − τi)− E4 (τj)]

G2 (i, τj) = GHi,j = − 1
2E3 (τj)− 1

τ E4 (τj)−
1
τ2

i

[E5 (τj − τi)− E5 (τj)]


