DOI QR코드

DOI QR Code

Potential Application of the Recombinant Escherichia coli-Synthesized Heme as a Bioavailable Iron Source

  • Kwon, Oh-Hee (Department of Biotechnology, The Catholic University of Korea) ;
  • Kim, Su-Sie (Department of Biotechnology, The Catholic University of Korea) ;
  • Hahm, Dae-Hyun (Institute of Oriental Medicine and Acupuncture & Meridian Science Research Center, Kyung Hee University) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Kim, Pil (Department of Biotechnology, The Catholic University of Korea)
  • Published : 2009.06.30

Abstract

To investigate the potential use of microbial heme as an iron source, recombinant Escherichia coli coexpressing ALA synthase (HemA) as well as the NADP-dependent malic enzyme (MaeB) and dicarboxylic acid transporter (DctA) were cultured. The typical red pigment extracted from the recombinant E. coli after 38 h showed highest absorbance at 407 nm, and the amount of iron in 38.4 mg of microbial heme extract derived from 6-1 fermentation broth was 4.1 mg. To determine the commercial potential of the recombinant E.coli-synthesized iron-associated heme as an iron source, mice were fed the iron-free provender with the microbial heme extract. The average body weight reduction of mice fed non-iron provender was 2.3%, whereas no detectable weight loss was evident in mice fed microbial heme addition after 15 days. The heme content of the blood from microbial heme fed mice was 4.2 mg/ml whereas that of controls was 2.4 mg/ml, which implies that the microbial heme could be available for use as an animal iron source.

Keywords

References

  1. Berry, E. A. and B. L. Trumpower. 1987. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal. Biochem. 161: 1-15 https://doi.org/10.1016/0003-2697(87)90643-9
  2. Carpenter, C. E. and A. W. Mahoney. 1992. Contributions of heme and nonheme iron to human nutrition. Crit. Rev. Food Sci. Nutr. 31: 333-367 https://doi.org/10.1080/10408399209527576
  3. Di Iorio, E. E. 1981. Preparation of derivatives of ferrous and ferric hemoglobin. Methods Enzymol. 76: 57-72 https://doi.org/10.1016/0076-6879(81)76114-7
  4. Dong, X., B. Tang, J. Li, Q. Xu, S. Fang, and Z. Hua. 2008. Expression and purification of intact and functional soybean (Glycine max) seed ferritin complex in Escherichia coli. J. Microbiol. Biotechnol. 18: 299-307
  5. Frankenberg, N., J. Moser, and D. Jahn. 2003. Bacterial heme biosynthesis and its biotechnological application. Appl. Microbiol. Biotechnol. 63: 115-127 https://doi.org/10.1007/s00253-003-1432-2
  6. Izadi, N., Y. Henry, J. Haladjian, M. E. Goldberg, C. Wandersman, M. Delepierre, and A. Lecroisey. 1997. Purification and characterization of an extracellular heme-binding protein, HasA, involved in heme iron acquisition. Biochemistry 36: 7050-7057 https://doi.org/10.1021/bi962577s
  7. Kwon, Y. D., O. H. Kwon, H. S. Lee, and P. Kim. 2007. The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J. Appl. Microbiol. 103: 2340-2345 https://doi.org/10.1111/j.1365-2672.2007.03485.x
  8. Kwon, Y. D., S. Y. Lee, and P. Kim. 2006. Influence of gluconeogenic phosphoenol pyruvate carboxylkinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition. J. Microbiol. Biotechnol. 16:1448-1452
  9. Lee, D. H., D. C. Oh, Y. S. Oh, J. C. Malinverni, J. J. Kukor, and H. Y. Kahng. 2007. Cloning and characterization of monofunctional catalase from photosynthetic bacterium Rhodospirillum rubrum S1. J. Microbiol. Biotechnol. 17: 1460-1468
  10. Lisbona, F., M. D. Reyes-Andrada, I. Lopez-Aliaga, M. Barrionuevo, M. J. Alferez, and M. S. Campos. 1999. The importance of the proportion of heme/nonheme iron in the diet to minimize the interference with calcium, phosphorus, and magnesium metabolism on recovery from nutritional ferropenic anemia. J. Agric. Food Chem. 47: 2026-2032 https://doi.org/10.1021/jf9807622
  11. Reeves, P. G., F. H. Nielsen, and G. C. Fahey Jr. 1993. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123: 1939-1951
  12. Sambrook, J. and D. W. Russell. 2000. Molecular Cloning:A Laboratory Manual. Cold Spring Harbor Laboratory. Press, New York
  13. Shin, J. A., Y. D. Kwon, O. H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J. Microbiol. Biotechnol. 17: 1579-1584
  14. Volkova, T. N. and N. V. Patrina. 1967. [On the orthophenanthroline method of determination of iron in blood serum]. [In Russian.] Lab. Delo. 2: 97-98
  15. Warren, M. J. and A. I. Scott. 1990. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem. Sci. 15: 486-491 https://doi.org/10.1016/0968-0004(90)90304-T

Cited by

  1. Porphyrin Derivatives from a Recombinant Escherichia coli Grown on Chemically Defined Medium vol.22, pp.12, 2009, https://doi.org/10.4014/jmb.1208.08054
  2. 철원소를 함유한 분자기반 생체물질 나노입자들의 연 x선 방사광 분광 연구 vol.22, pp.4, 2009, https://doi.org/10.4283/jkms.2012.22.4.125
  3. Effect of Gene Amplifications in Porphyrin Pathway on Heme Biosynthesis in a Recombinant Escherichia coli vol.23, pp.5, 2013, https://doi.org/10.4014/jmb.1302.02022
  4. Soft X-ray synchrotron radiation spectroscopy study of molecule-based nanoparticles vol.65, pp.10, 2009, https://doi.org/10.3938/jkps.65.1551
  5. Heme Derived from Corynebacterium glutamicum: A Potential Iron Additive for Swine and an Electron Carrier Additive for Lactic Acid Bacterial Culture vol.27, pp.3, 2009, https://doi.org/10.4014/jmb.1611.11010