DOI QR코드

DOI QR Code

퍼콜레이션 이론에 기초한 복합재료의 복소 유전율 모델에 대한 연구

Study on the numerical model of complex permittivity of composites based on the percolation theory

  • 김진봉 (한국기계연구원 부설 재료연구소 복합재료연구그룹) ;
  • 이상관 (한국기계연구원 부설 재료연구소 복합재료연구그룹) ;
  • 김천곤 (한국과학기술원 기계공학과 항공우주공학)
  • 발행 : 2009.06.30

초록

본 논문에서는 퍼콜레이션 이론적 관점에 기초한 복소 유전율의 수치모델을 제시하고, 전기 전도성이 뛰어난 카본 블랙을 혼합한 유리섬유/에폭시 복합재료 적층판의 복소 유전율을 이용하여 이 깃을 검증하였다. 제시된 모델은 카본 블랙의 함유율이 퍼콜레이션 임계함유율 보다 높고, 주파수가 충분히 높아서 복합재료의 교류 전기전도도가 주파수에 비례하는 구간에서의 복소 유전율을 모사한다. 복합재료의 복소 유전율은 벡터회로망분석기와 7 mm 동축관을 이용하여 $0.5\;GHz\;{\sim}18\;GHz$ 대역에서 측정되었다. 제시된 모델은 퍼콜레이션 이론에서 유용하게 사용되는 축척(눈금잡이) 법칙의 함수형태와 실험을 통하여 구한 상수들로 구성되어 있으며, 복소 유전율을 주파수와 가본 블랙의 함유율의 함수로 나타내었다. 제시된 모델은 복소 유전율을 측정결과와의 비교를 통하여 검증되었다.

In this paper, we proposed a numerical model the complex permittivity for the E-glass fabric/epoxy composite laminate containing electrical conductive carbon black. The model is based on the percolation theory and for the composites over than the percolation threshold and in higher frequency band in that the AC conductivity is fully proportional to the frequency. The measurement for the complex permittivity wasperformed at the frequency band of 0.5 GHz $\sim$ 18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The proposed model is composed of the numerical equations of the scaling law used in percolation theory and constants obtained from experiments to quantify the model itself. The model describes the complex permittivity as the function of frequency and filler concentration. The model was verified by being compared with the measurements.

키워드

참고문헌

  1. J.B. Kim, S.K. Lee, c.G. Kim, "Comparison study on theeffect of carbon nano materials, for single-layermicrowavc absorbers, in X-band," Compoositics Science and Technology, Vol. 68, 2008, pp. 2909-2916 https://doi.org/10.1016/j.compscitech.2007.10.035
  2. O. Strauffer, A. Aharony, lntroduction to PercolationTheory, TAYLOR & FRANCIS, UK, 1991
  3. R. Wycisk, R. Pozniak, A. Pastemak, Conductive polymer materials with lower filler contcnt," Journal ol electrostatic, Vol. 56,2002, pp. 55-66 https://doi.org/10.1016/S0304-3886(01)00204-2
  4. R. Schuelεr, J. Petermann、K. Schulte, "Agglomeration and electrical percolation behavior of carbon black dispersed in cpoxy resin," Journal ol Applied Polymer Science, Vol. 63, 1997, pp. 1741-1746 https://doi.org/10.1002/(SICI)1097-4628(19970328)63:13<1741::AID-APP5>3.0.CO;2-G
  5. L. Flandin, T. Prasse, R. Schueler, K. Schulte, W. Bauhofer, J. Y. Cavaille, "Anomalous percolation transition in carbon-black-cpoxy composite materials," Physical Review B, Vol. 59(22), 1999, pp. 14349-14355 https://doi.org/10.1103/PhysRevB.59.14349
  6. A. Kapitulnik, A. Aharony, G. Deutscher, D. Stauffer, "Self similarity and correlations in percolation," Journal of Physics A:Mathematical and General, Vol. 16, 1983,pp. L269-L274 https://doi.org/10.1088/0305-4470/16/8/003
  7. J. Gurland, "An Estimate of contact and continuity of dispersions in opaque samples, "Transaction of the Metallurgical Society of AIME, Vol. 236, (1966) pp642-646
  8. B.J. Last, D.J. Thoulcss, "Percolation theory and electrical conductivity," Physical Review Letter, Vol.27, 1971, pp. 1719-1721 https://doi.org/10.1103/PhysRevLett.27.1719
  9. S. Kirkpatrick, "Percolation and conduction," Review of Mordern Physics , Vol. 45 , No. 4, 1973, pp. 574-588 https://doi.org/10.1103/RevModPhys.45.574
  10. A.L. Efros, B. I. Suklovskii, "Critical behavior of conductivity and dielectric constant near the metal-on-metal transition threshold," Phys. Stat. Sol. (b) ,Vol. 76, 1976, pp. 475-485 https://doi.org/10.1002/pssb.2220760205
  11. J.M. Luck, "A real-space renonnalization group approach to electrical and noisc properties of pεrcolation clusters,"Journal of Physies A:Mathematical and General, Vol.18, 1985, pp. 2061-2078 https://doi.org/10.1088/0305-4470/18/11/027
  12. A. L. R. Bug, G.S. Grest, M.H. Cohen, l. Wcbman, "AC responsc near percolation threshold:transfer matrix calculation in 2D," Journal of Physics A: Mathematical and General, Vol. 19, 1986, pp. L323-328 https://doi.org/10.1088/0305-4470/19/6/005
  13. Y. Gefen, A. Aharony, S. Alexander, "Anomalous diffusion on percolation clusters,'" Physical Review Letters, Vol.50(1), 1983, pp. 77-80 https://doi.org/10.1103/PhysRevLett.50.77
  14. Y. Yagil, M. Yosefin, D.J. Bergman, G. Deutscher, P. Gadenne, "Scaling theory for the optical properties of semicontinuous metal film," Physical Review B, Vol.43(13), 1991 , pp. 11342-11344 https://doi.org/10.1103/PhysRevB.43.11342
  15. Y. Song, T.W. Noh, S.I. Lee, J.R. Gaines, "Expcrimental study of thc three-dimensional ae conductivity and dielectric constant of a conductor-insulator composite near the percolation threshold," Physical Review B, Vol. 33(2),1986, pp. 904-908 https://doi.org/10.1103/PhysRevB.33.904
  16. K. Bcnaboud, M.E. Achour, F. Carmona, L. Salome, "Electrical properties of carbon black-epoxy resin heterogcneous matcrials near the percolation threshold," Ann. Chim, Sci. Mat., Vol. 23, 1998, pp. 315-318 https://doi.org/10.1016/S0151-9107(98)80082-2
  17. R.B. Laibowitz, and Y. Gefen, "Dynamic Scaling near thε percolation threshold in thin Au films ," Phvsical Review Letters, Vol. 53, 1984, pp. 380-383 https://doi.org/10.1103/PhysRevLett.53.380
  18. M.T. Conor, S. Roy, T.A. Ezquerra, F.J. Balta Calleja, "Broadband ac conductivity of conductor-polymcr composites," Physical Review B, Vol. 57, No. 4, 1998, pp. 2286-2294 https://doi.org/10.1103/PhysRevB.57.2286
  19. J.B. Kim, T.W. Kim, C.G. Kim, "Simulation method of complex permittivity of carbon black/epoxy composltcs at microwave frequency band," Journal of Applied Polymer Science, Vol. 100, 2006, pp. 2189-2195 https://doi.org/10.1002/app.23653
  20. James Baker-Javis et al, Transmission/Reflection and Short-Circuit Line Method for Measuring Pennittivity and Permeability, NlST TechnicaI Note 1341, 1355-R