DOI QR코드

DOI QR Code

Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy

  • Kim, Ki-Kang (BK21 Physics Division, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Kim, Soo-Min (BK21 Physics Division, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Cui, Yan (BK21 Physics Division, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Jeong, Mun-Seok (Advanced Photonics Research Institute, Gwangju Institure of Science and Technology) ;
  • Han, Jong-Hun (Energy and Nanomaterials Research Center, Korea Electronics Technology Institute) ;
  • Choi, Young-Chul (R&D Center, Hanwha Nanotech) ;
  • An, Kay-Hyeok (Material and Development Department Jeonju Machinery Research Center) ;
  • Oh, Kyung-Hui (Korea Agency for Technology and Stardards) ;
  • Lee, Young-Hee (BK21 Physics Division, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University)
  • Received : 2009.02.14
  • Accepted : 2009.03.16
  • Published : 2009.03.30

Abstract

We measured the degree of macrodispersion of the various single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) using UV-VIS-NIR absorption spectroscopy. CNTs were dispersed with SDS of 2 wt % in deionized water using the homogenizer and then were further centrifugated at 6000 g for 10 min. The degree of macrodispersion, expressed by $D_m({\lambda})=A_a({\lambda})/A_b({\lambda})^*100$ (%), where ${\lambda}$ is the wavelength and $A_a({\lambda})$ and $A_b({\lambda})$ are the absorbance of the sample after and before centrifugation, respectively. In the case of MWCNTs, we evaluated the degree of macrodispersion by the average degree of macrodispersion ($D_m({\lambda})$) between 1000 and 1200 nm. The degree of macrodispersion of SWCNTs was evaluated at the wavelength in which van Hove singularity-related transition regions were excluded, i.e., the range was chosen between ${E_{11}}^S$ and ${E_{22}}^S$ peaks. We have estimated six samples with the same method. The standard deviation of each sample was lower than 5. Therefore, we presented a reliable evaluation method for the macrodispersion of CNTs for standardization.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622. https://doi.org/10.1126/science.287.5453.622
  3. Zhan. G.-D.; Kuntz. J. D.; Wan, J.; Mukherjee, A. K. Nature Mater. 2002, 2, 38. https://doi.org/10.1038/nmat793
  4. Kim S.J.; im J.S.; Kang P.H.; Kim T.; Lee Y.S.; Carbon Lett. 2008, 9, 294. https://doi.org/10.5714/CL.2008.9.4.294
  5. Tans. S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49. https://doi.org/10.1038/29954
  6. Geng, H.-Z.; Kim. K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. J. Am. Chem. Soc. 2007, 129, 7758. https://doi.org/10.1021/ja0722224
  7. Kordas, K.; Toth, G.; Moilanen, P.; Kumpumaki, M.; Vahakangas, J.; Uusimaki, A.; Vajtai, R.; Ajayan, P. M. Appl. Phys. Lett. 2007, 90, 123105. https://doi.org/10.1063/1.2714281
  8. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787. https://doi.org/10.1126/science.1060928
  9. Sharon M.; Rusop M.; Soga T.; Afre R.A. Carbon Lett. 2008, 9, 17. https://doi.org/10.5714/CL.2008.9.1.017
  10. Sharon M.; Datta S.; Shah M.; Sharon M.W.; Soga T.; Afre R.A. Carbon Lett. 2007, 8, 184. https://doi.org/10.5714/CL.2007.8.3.184
  11. Jeong, H. J.; Kim. K. K.; Jeong, S. Y.; Park, M. H.; Yang, C. W.; Lee, Y. H. J. Phys. Chem. B 2004, 108, 17695. https://doi.org/10.1021/jp046152o
  12. Bronikowski. M. J.; Willis, P. A.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. J. Vac. Sci. Technol. A 2001, 19, 1800. https://doi.org/10.1116/1.1380721
  13. Kitiyanan, B.; Alvarez, W. E.; Harwell, J. H.; Resasco, D. E. Chem. Phys. Lett. 2000, 317, 497. https://doi.org/10.1016/S0009-2614(99)01379-2
  14. Park, Y. S.; Kim, K. S.; Jeong, H. J.; Kim, W. S.; Moon, J. M.; An, K. H.; Bae, D. J.; Lee, Y. S.; Park, G.-S.; Lee, Y. H. Synth. Met. 2002, 126, 245. https://doi.org/10.1016/S0379-6779(01)00563-X
  15. Sun, C.-H.; Yin, L.-C.; Li. F.; Lu, G.-Q.; Cheng, H.-M. Chem. Phys. Lett. 2005, 403, 343. https://doi.org/10.1016/j.cplett.2005.01.030
  16. Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; hauge, R. H.; Tour, J. M.; Smalley, R. E. Science 2003, 301, 1519. https://doi.org/10.1126/science.1087691
  17. O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593. https://doi.org/10.1126/science.1072631
  18. Lee, J.-H.; Yoon, S.-M.; Kim, K. K.; Cha, I.-S.; Park Y. J.; Choi, J.-Y.; Lee, Y. H.; Paik, U. J. Phys. Chem. C 2008, 112, 15267. https://doi.org/10.1021/jp804485b
  19. Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.; Smalley, R. E. Nano Lett. 2003, 3, 1379. https://doi.org/10.1021/nl034524j
  20. Kim, K. K.; Bae, D. J.; Yang, C.-M; An, K. H.; Lee, J. Y.; Lee, Y. H. J. Nanosci. Nanotech. 2005, 5, 1055. https://doi.org/10.1166/jnn.2005.159
  21. Kim, K. K.; Yoon, S.-M.; Choi, J.-Y.; Lee, J.; Kim, B.-K.; Kim, J. M.; Lee, J.-H.; Paik, U.; Park, M. H.; Yang, C. W.; An, K. H.; Chung, Y.; Lee, Y. H. Adv. Func. Mater. 2007, 17, 1775. https://doi.org/10.1002/adfm.200600915
  22. Jeong, M. S.; Byeon, C. C.; Cha, O. H.; Jeong, H.; Han, J. H.; Choi. Y. C.; An, K. H.; Oh, K. H.; Kim, K. K.; Lee, Y. H. NANO 2008, 3, 101. https://doi.org/10.1142/S1793292008000885
  23. Ausman, K. D.; Piner, R.; Lourie, O.; Ruoff, R. S.; Korobov, M. J. Phys. Chem. B 2000, 104, 8911. https://doi.org/10.1021/jp002555m
  24. Jeong, S. H.; Kim, K. K.; Jeong; S. J.; An, K. H.; Lee, S. H.; Lee, Y. H. Synth. Met. 2007, 157, 570. https://doi.org/10.1016/j.synthmet.2007.06.012
  25. Geng, H. Z.; Lee, D. S.; Kim, K. K.; Kim, S. J.; Bae, J. J.; Lee. Y. H. J. Kor. Phys. Soc. 2008, 53, 979. https://doi.org/10.3938/jkps.53.979
  26. An, K. H.; Lee. Y. H. NANO 2006, 1, 115. https://doi.org/10.1142/S1793292006000136

Cited by

  1. A simple solution for the determination of pristine carbon nanotube concentration vol.138, pp.5, 2013, https://doi.org/10.1039/c2an36399b