DOI QR코드

DOI QR Code

Nanostructured Bulk Ceramics (Part II. Superplasticity and High Strain Rate Superplasticity)

  • Han, Young-Hwan (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Mukherjee, Amiya K. (Department of Chemical Engineering and Materials Science, University of California at Davis)
  • Published : 2009.07.31

Abstract

In Part II, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method, SPS. These improvements in mechanical properties were briefly discussed in the context of the results from the microstructural investigations. SPS forming approach provides a new route for low temperature and high-strain-rate superplasticity for nanostructured materials and should impact and interest a broad range of scientists in materials research and superplastic forming technology.

Keywords

References

  1. I.-W. Chen and L.A. Xue, 'Development of Superplastic Structural Materials,' J. Am. Ceram. Soc., 73 2585-609 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06734.x
  2. J.D. Kuntz, J. Wan, and A. K. Mukherjee, unpublished results
  3. G. D. Zhan, J. Kuntz, J. Wan, J. Garay, and A. K. Mukherjee, 'A Novel Processing Route to Develop a Dense Nanocrystalline Alumina Matrix (100 nm) Nanocomposites Material,' J. Am. Ceram. Soc., 86 200-2 (2002) https://doi.org/10.1111/j.1151-2916.2003.tb03306.x
  4. X. Zhou, D. M. Hulbert, J.D. Kuntz, J.E. Garay, and A.K. Mukherjee, 'Superplasticity of the Nanostructured Binary Systems of Zirconia-Alumina-Spinel Ceramics by Spark Plasma Sintering Process,' Adv. Ceramic Matrix Composites, 155-64 (2004)
  5. X. Zhou, D.M. Hulbert, J.D. Kuntz, R.K. Sadangi, V. Shukla, B.H. Kear, and, A.K. Mukherjee, 'Superplasticity of Zirconia-alumina-spinel Nanoceramic Composite by Spark Plasma Sintering of Plasma Sprayed Powders,' Mater. Sci. Eng. A, 394 353-59 (2005) https://doi.org/10.1016/j.msea.2004.11.037
  6. H. Kokawa, T. Watanabe, and S. Karashima, "Sliding Behavior and Dislocation Structures in Aluminum Grain Boundaries," Phil. Mag. A, 44 1239-54 (1981) https://doi.org/10.1080/01418618108235806
  7. J.D. Kuntz, G.-D. Zhan, and A. K. Mukherjee, 'Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness,' MRS Bulletin, January, 22-7 (2004) https://doi.org/10.1557/mrs2004.12
  8. I. Levin, W. D. Kaplan, D. G. Brandon, and A. A. Layyous, 'Effect of SiC Submicrometer Particle Size and Content on Fracture Toughness > of Alumina.SiC Nanocomposites,' J. Am. Ceramic Soc., 78 254-57 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08397.x
  9. T. Ohji, J. Young-Keun, C. Yong-Ho, and K. Niihara, 'Strengthening and Toughening Mechanisms of Ceramic Nanocomposites,' J. Am. Ceramic Soc., 81 1453-61 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02503.x
  10. Y. Ji and J. A. Yeomans, 'Processing and Mechanical Properties of $Al_2O_3-5$ vol.% Cr Nanocomposites,' J. Euro. Ceramic Soc., 22 1927-36 (2002) https://doi.org/10.1016/S0955-2219(01)00528-3
  11. T. Sekino, T. Nakajima, S. Ueda, and K. Niihara, 'Reduction and Sintering of a Nickel-dispersed-alumina Composite and its Properties,' J. Am. Ceramic Soc., 80 1139-49 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02956.x
  12. S. T. Oh, T. Sekino, and K. Niihara, 'Fabrication and Mechanical Properties 5 Vol% Copper Dispersed Alumina Nanocomposite,' J. Euro. Ceramic Soc., 18 31-7 (1998) https://doi.org/10.1016/S0955-2219(97)00099-X
  13. T. Sekino and K. Niihara, 'Microstructural Characteristics and Mechanical Properties for $Al_2O_3$/metal Nanocomposites,' Nanostr. Mater., 6 663-66 (1995) https://doi.org/10.1016/0965-9773(95)00145-X
  14. R. W. Siegel, S. K. Chang, B. J. Ash, J. Stone, P. M. Ajayan, R. W. Doremus, and L. S. Schadler, 'Mechanical Behavior of Polymer and Ceramic Matrix Nanocomposites,' Scripta Mater., 44 2061-64 (2001) https://doi.org/10.1016/S1359-6462(01)00892-2
  15. E. Flahaut, A. Peigney, C. Laurent, C. Marliere, F. Chastel, and A. Rousset, 'Carbon Nanotube-metal-oxide Nanocomposites: Microstructure, Electrical Conductivity and Mechanical Properties,' Acta Mater., 48 3803-12 (2000) https://doi.org/10.1016/S1359-6454(00)00147-6
  16. S. Maensiri and S. G. Roberts, "Thermal Shock of Ground and Polished Alumina and $Al_2O_3$/SiC Nanocomposites," J. Euro. Ceramic Soc., 22 2945-56 (2002) https://doi.org/10.1016/S0955-2219(02)00052-3
  17. C. C. Anya, 'Hertzian Flaw Analysis and Models for the Prediction of Flexural Fracture Strength of $Al_2O_3$ and $Al_2O_3$/ SiC Nanocomposites,' J. Mater. Sci., 34 5557-67 (1999) https://doi.org/10.1023/A:1004311811808
  18. R. W. Davidge, R. J. Brook, F. Cambier, M. Poorteman, A. Leriche, D. O'Sullivan, S. Hampshire, and T. Kennedy, 'Fabrication, Properties, and Modelling of Engineering Ceramics Reinforced with Nanoparticles of Silicon Carbide,' British Ceramic Transactions, 96 121-27 (1997)
  19. W. Z. Zhu, J. H. Gag, and Z. S. Ding, 'Microstructure and Mechanical Properties of a $Si_3N_4/Al_2O_3$ Nanocomposite,' Mater. Sci., 32 537-42 (1997) https://doi.org/10.1023/A:1018550727099
  20. S. Bhaduri and S. B. Bhaduri, 'Enhanced Low Temperature Toughness of $Al_2O_3-ZrO_2$ Nano-nano Composites,' Nanostr. Mater., 8 755-63 (1997) https://doi.org/10.1016/S0965-9773(97)00215-8

Cited by

  1. Critical assessment: electrical field/current application – a revolution in materials processing/sintering? vol.33, pp.16, 2017, https://doi.org/10.1080/02670836.2017.1341692