DOI QR코드

DOI QR Code

A Molecular Dynamics Simulation for the Moving Water Droplet on Atomistically Smooth Solid Surface

원자적으로 균일한 평판 위에서 움직이는 물 액적에 대한 분자동역학 시뮬레이션

  • 홍승도 (부산대학교 기계공학부 대학원) ;
  • 하만영 (부산대학교 기계공학부)
  • Published : 2009.08.01

Abstract

The variation in the shape of water droplet moving on atomistically smooth solid surface in the presence of a constant body force is simulated using molecular dynamics simulation. We investigated how the advancing and receding contact angle of the moving water droplet changes on a solid surface having various characteristic energies. From the MD simulation results, we obtained the density profile defined as the number of water molecules at a given position. Then, assuming the water droplet periphery to be a circle, we calculated the contact angles by using a nonlinear fitting of the half-density contour line. The present simulation clearly shows the different profile of the advancing and receding contact angle for these three different interaction potential between the water droplet and the solid surface.

Keywords

References

  1. Guillot, B., 2002, 'A Reappraisal of What We have Learnt During Three Decades of Computer Simulations on Water,' Journal of Molecular Liquids, Vol. 101. No. 1-3, pp. 219~260 https://doi.org/10.1016/S0167-7322(02)00094-6
  2. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. and Klein, M. L., 1983, "Comparison of Simple Potential Functions for Simulating Liquid Water," Journal of Chemical Physics, Vol. 79, pp. 926~935. https://doi.org/10.1063/1.445869
  3. Jorgensen, W. L., and Madura, J. D., 1985, 'Temperature and Size Dependence for Monte Carlo Simulations of TIP4P Water,' Molecular Physics, Vol. 56, pp. 1381~1392 https://doi.org/10.1080/00268978500103111
  4. Berendsen, H. J. C., Grigera, J. R. and Straatsma, T. P., 1987, "The Missing Term in Effective Pair Potentials," Journal of Physical Chemistry, Vol. 91, pp. 6269~6271. https://doi.org/10.1021/j100308a038
  5. Elsherbini, A.I., and Jacobi, A.M., 2004, 'Liquid Drops on Vertical and Inclined Surfaces (I. An Experimental Study of Drop Geometry),' Journal of Colloid and Interface Science, Vol. 273, pp. 556~565 https://doi.org/10.1016/j.jcis.2003.12.067
  6. Elsherbini, A.I., and Jacobi, A.M., 2004, 'Liquid Drops on Vertical and Inclined Surfaces (II. A Method for Approximating Drop Shapes),' Journal of Colloid and Interface Science, Vol. 273, pp. 566~575 https://doi.org/10.1016/j.jcis.2003.12.043
  7. Elsherbini, A. I., and Jacobi, A. M., 2006, 'Retention Forces and Contact Angles for Critical Liquid Drops on Non-Horizontal Surfaces,' Journal of Colloid and Interface Science, Vol. 299, pp. 841~849 https://doi.org/10.1016/j.jcis.2006.02.018
  8. Pierce, E., Carmona, F.J. and Amirfazli, A., 2008, 'Understanding of Sliding and Contact Angle Results in Tilted Plate Experiments,' Colloids and Surfaces A, Vol. 323, pp. 73~82 https://doi.org/10.1016/j.colsurfa.2007.09.032
  9. Gao, L. and McCarthy, T.J., 2008, "Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear Versus Tensile Hydrophobicity, and Wettability Characterization," Langmuir, Vol. 24, pp. 9183~9188 https://doi.org/10.1021/la8014578
  10. Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R., Kale, L. and Schulten, K., 2005, 'Scalable Molecular Dynamics with NAMD,' Journal of Computational Chemistry, Vol. 26, No. 16, pp. 1781~1802 https://doi.org/10.1002/jcc.20289
  11. Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. 1977, 'Numerical Integration of the Cartesian Equations of Motion of a System with Constraints,' Journal of Computational Physics, Vol. 23, pp. 327~341 https://doi.org/10.1016/0021-9991(77)90098-5
  12. Choi, H.J., Kim, J.Y., Hong, S.D., Ha, M.Y., and Jang, J., 2009, 'Molecular Simulation of the Nanoscale Water Confined Between an Atomic Force Microscope Tip and a Surface,' Molecular Simulation, In-press https://doi.org/10.1080/08927020802635129
  13. Darden, T., York, D., and Pederson, L., 1993, 'Particle Mesh Ewald: An N.log (N) Method for Ewald Sums in Large Systems,' Journal of Chemical Physics, Vol. 98. pp. 10089~10092 https://doi.org/10.1063/1.464397
  14. Adelman, S., and Doll, J., 1976, 'Generalized Langevin Equation Approach for Atom. Solid-Surface Scattering-General Formulation for Classical Scattering off Harmonic Solids', Journal of Chemical Physics, Vol. 64. pp. 2375~2388 https://doi.org/10.1063/1.432526
  15. Bonometti, T., and Magnaudet, J., 2007, 'An Interface Capturing Method for Incompressible Two-Phase Flows,' International Journal of Multiphase Flow, Vol. 33, pp. 109~1330 https://doi.org/10.1063/1.464397
  16. Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., and Koumoutsakos, P., 2003, 'On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations and Carbon Nanotubes,' Journal of Physical Chemistry. B, Vol. 107, pp. 1345~1352 https://doi.org/10.1021/jp0268112