참고문헌
- S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Inc., River Edge, NJ, 2002
- S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press,Inc., Florida, 2003
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431–434 https://doi.org/10.1155/S016117129100056X
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436 https://doi.org/10.1006/jmaa.1994.1211
- R. B. Holmes, Geometric Functional Analysis and Its Applications, Graduate Texts in Mathematics, No. 24. Springer-Verlag, New York-Heidelberg, 1975
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224
- D. H. Hyers, George Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, 1998
- S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3137–3143 https://doi.org/10.1090/S0002-9939-98-04680-2
- Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math. 22 (1989), no. 2, 499–507
- Y.-H. Lee and K.-W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305–315 https://doi.org/10.1006/jmaa.1999.6546
- J. C. Parnami and H. K. Vasudeva, On Jensen's functional equation, Aequationes Math. 43 (1992), no. 2-3, 211–218 https://doi.org/10.1007/BF01835703
- Th. M. Rassias, New generalizations of Jensen's functional equation, Proc. Amer. Math. Soc. 123 (1995), no. 2, 495–503
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300
- Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), no. 1, 106–113 https://doi.org/10.1016/0022-247X(91)90270-A
- Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23–130 https://doi.org/10.1023/A:1006499223572
- Th. M. Rassias and P. Semrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), no. 2, 325–338 https://doi.org/10.1006/jmaa.1993.1070
- Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989–993
- S. Rolewicz, Metric Linear Spaces, PWN-Polish Scientific Publishers, Warsaw, 1972
- T. Trif, Hyers-Ulam-Rassias stability of a Jensen type functional equation, J. Math. Anal. Appl. 250 (2000), no. 2, 579–588 https://doi.org/10.1006/jmaa.2000.6995
- S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964
- J. Wang, The additive approximation on a four-variate Jensen-type operator equation, Int. J. Math. Math. Sci. (2003), no. 50, 3171–3187 https://doi.org/10.1155/S0161171203210486
- J. Wang, Some further generalizations of the Hyers-Ulam-Rassias stability of functional equations, J. Math. Anal. Appl. 263 (2001), no. 2, 406–423 https://doi.org/10.1006/jmaa.2001.7587
- J. Wang, On the generalizations of the Hyers-Ulam-Rassias stability of Cauchy equations, Acta Anal. Funct. Appl. 4 (2002), no. 4, 294–300
- J. Wang, On the generalizations of the stability of Pexider equations and Jensen equations, Nonlinear Funct. Anal. Appl. 7 (2002), no. 2, 229–239
- A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978
피인용 문헌
- Generalized stabilities of two functional equations vol.86, pp.3, 2013, https://doi.org/10.1007/s00010-012-0180-8
- Nearly Quartic Mappings in β-Homogeneous F-Spaces vol.63, pp.1-2, 2013, https://doi.org/10.1007/s00025-011-0215-9
- Mean square Hyers-Ulam stability of stochastic differential equations driven by Brownian motion vol.2016, pp.1, 2016, https://doi.org/10.1186/s13662-016-1002-4