References
- Alper, S., L. Duncan, and R. Losick. 1994. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77, 195-205 https://doi.org/10.1016/0092-8674(94)90312-3
-
Bagyan, I., L. Casillas-Martinez, and P. Setlow. 1998. The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by
$\sigma$ $^F$ , and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol. 180, 2057-2062 - Bayles, D.O. and B.J. Wilkinson. 2000. Osmoprotectants and cryoprotectants for Listeria monocytogenes. Lett. Appl. Microbiol. 30, 23-27 https://doi.org/10.1046/j.1472-765x.2000.00646.x
- Begley, M., R.D. Sleator, C.G.M. Gahan, and C. Hill. 2005. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun. 73, 894-904. https://doi.org/10.1128/IAI.73.2.894-904.2005
-
Benson, A.K. and W.G. Haldenwang. 1992. Characterization of a regulatory network that control
$\sigma$ $^B$ expression in Bacillus subtilis. J. Bacteriol. 174, 749-757 https://doi.org/10.1128/jb.174.3.749-757.1992 -
Bernhardt, J., U. V
$\ddot{o}$ lker, A. V$\ddot{o}$ lker, H. Antelmann, R. Schmid, H. Mach, and M. Hecker. 1997. Specific and general stress proteins in Bacillus subtilis-a two-dimensional protein electrophoresis study. Microbiology 143, 999-1017 https://doi.org/10.1099/00221287-143-3-999 -
Boylan, S.A., A.R. Redfield, M.S. Brody, and C.W. Price. 1993. Stress-induced activation of the
$\sigma$ $^B$ transcription factor of Bacillus subtilis. J. Bacteriol. 175, 7931-7937 https://doi.org/10.1128/jb.175.24.7931-7937.1993 - Braden, C.R. 2003. Listeriosis. Pediatr. Infect. Dis. J. 22, 745-746 https://doi.org/10.1097/01.inf.0000079439.30496.57
-
Brigulla, M., T. Hoffmann, A. Krisp, A. V
$\ddot{o}$ lker, E. Bremer, and U. V$\ddot{o}$ lker. 2003. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J. Bacteriol. 185, 4305-4314 https://doi.org/10.1128/JB.185.15.4305-4314.2003 - Chakraborty, T., M. Leimeister-Wchter, E. Domann, M. Hartl, W. Goebel, T. Nichterlein, and S. Notermans. 1992. Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J. Bacteriol. 174, 568-574 https://doi.org/10.1128/jb.174.2.568-574.1992
-
Chan, Y.C., K.J. Boor, and M. Wiedmann. 2007.
$\sigma$ $^B$ -dependent and$\sigma$ $^B$ -independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth. Appl. Environ. Microbiol. 73, 6019-6029 https://doi.org/10.1128/AEM.00714-07 -
Chaturongakul, S. and K.J. Boor. 2004. RsbT and RsbV contribute to
$\sigma$ $^B$ -dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl. Environ. Microbiol. 70, 5349-5356 https://doi.org/10.1128/AEM.70.9.5349-5356.2004 - Cole, M.B., M.V. Jones, and C. Holyoak. 1990. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J. Appl. Bacteriol. 69, 63-72 https://doi.org/10.1111/j.1365-2672.1990.tb02912.x
- Cotter, P.D., C.G.M. Gahan, and C. Hill. 2001. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol. Microbiol. 40, 2465-2475 https://doi.org/10.1046/j.1365-2958.2001.02398.x
- Davis, M.J., P.J. Coote, and C.P. O'Byrne. 1996. Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth phase-dependent acid resistance. Microbiology 142, 2975-2982 https://doi.org/10.1099/13500872-142-10-2975
- Dufour, A. and W.G. Haldenwang. 1994. Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J. Bacteriol. 176, 1813-1820 https://doi.org/10.1128/jb.176.7.1813-1820.1994
-
Engelmann, S., C. Lindner, and M. Hecker. 1995. Cloning, nucleotide sequence, and regulation of katE encoding a
$\sigma$ $^B$ -dependent catalase in Bacillus subtilis. J. Bacteriol. 177, 5598-5605 https://doi.org/10.1128/jb.177.19.5598-5605.1995 -
Ferreira, A., C.P. O’ Byrne, and K.J. Boor. 2001. Role of
$\sigma$ $^B$ in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl. Environ. Microbiol. 67, 4454-4457 https://doi.org/10.1128/AEM.67.10.4454-4457.2001 -
Fraser, K.R., D. Sue, M. Wiedmann, K. Boor, and C.P. O'Byrne. 2003. Role of
$\sigma$ $^B$ in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is$\sigma$ $^B$ dependent. Appl. Environ. Microbiol. 69, 2015-2022 https://doi.org/10.1128/AEM.69.4.2015-2022.2003 - Glaser, P., L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend, F. Baquero, P. Berche, H. Bloecker, P. Brandt, T. Chakraborty, A. Charbit, F. Chetouani, E. Couv, A. de Daruvar, P. Dehoux, E. Domann, G. Domnguez-Bernal, E. Duchaud, L. Durant, O. Dussurget, K.D. Entian, H. Fsihi, F. Garca-del Portillo, P. Garrido, L, Gautier, W. Goebel, N. Gmez-Lpez, T. Hain, J. Hauf, D. Jackson, L.M. Jones, U. Kaerst, J. Kreft, M. Kuhn, F. Kunst, G. Kurapkat, E. Madueno, A. Maitournam, J.M. Vicente, E. Ng, H. Nedjari, G. Nordsiek, S. Novella, B. de Pablos, J.C. Prez-Diaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter, N. Simoes, A. Tierrez, J.A. Vzquez-Boland, H. Voss, J. Wehland, and P. Cossart. 2001. Comparative genomics of Listeria species. Science 294, 849-852 https://doi.org/10.1126/science.1063447
- Haldenwang, W.G. 1995. The sigma factors of Bacllus subtilis. Microbiol. Rev. 59, 1-30
- Haldenwang, W.G. and R. Losick. 1979. A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature 282, 256-260 https://doi.org/10.1038/282256a0
-
Haldenwang, W.G. and R. Losick. 1980. Novel RNA polymerase
$\sigma$ factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 77, 7000-7004 https://doi.org/10.1073/pnas.77.12.7000 - Hardy, J., J.J. Margolis, and C.H. Contag. 2006. Induced biliary excretion of Listeria monocytogenes. Infect. Immun. 74, 1819-1827 https://doi.org/10.1128/IAI.74.3.1819-1827.2006
-
Hecker, M. and U. V
$\ddot{o}$ lker. 2001. General stress response of Bacillus Bacillus subtilis and other bacteria. Adv. Microb. Physiol. 44, 35-91 https://doi.org/10.1016/S0065-2911(01)44011-2 - Hennge-Aronis, R. 2000. The general stress response in Escherichia coli, pp. 161-178. In G. Storz and R. Hennge-Aronis (eds.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C., USA
- Kalman, S., M.L. Duncan, S.M. Thomas, and C.W. Price. 1990. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J. Bacteriol. 172, 5575-5585 https://doi.org/10.1128/jb.172.10.5575-5585.1990
-
Kang, C.M., M.S. Brody, S. Akbar, X. Yang, and C.W. Price. 1996. Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor
$\sigma$ $^B$ in response to environmental stress. J. Bacteriol. 178, 3846-3853 https://doi.org/10.1128/jb.178.13.3846-3853.1996 - Karzai, A.W., E.D. Roche, and R.T. Sauer. 2000. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Biol. 7, 449-455 https://doi.org/10.1038/75843
- Karzai, A.W. and R.T. Sauer. 2001. Protein factors associated with the SsrA-SmpB tagging and ribosome rescue complex. Proc. Natl. Acad. Sci. USA 98, 3040-3044 https://doi.org/10.1073/pnas.051628298
- Kazmierczak, M.J., W. Wiedmann, and K.J. Boor. 2005. Alternative sigma factor and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev. 69, 527-543 https://doi.org/10.1128/MMBR.69.4.527-543.2005
-
Kazmierczak, M.J., S.C. Mithoe, K.J. Boor, and M. Wiedmann. 2003. Listeria monocytogenes
$\sigma$ $^B$ regulates stress response and virulence functions. J. Bacteriol. 185, 5722-5734 https://doi.org/10.1128/JB.185.19.5722-5734.2003 -
Kim, H., H. Marquis, and K.J. Boor. 2005.
$\sigma$ $^B$ contributes to Listeria monocytogenes invasion by controlling expression of inlA and inlB. Microbiology 151, 3215-3222 https://doi.org/10.1099/mic.0.28070-0 - Kim, Y.I., R.E. Burton, B.M. Burton, R.T. Sauer, and T.A. Baker. 2000. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell. 5, 639-648 https://doi.org/10.1016/S1097-2765(00)80243-9
- Krger, E., E. Witt, S. Ohlmeier, R. Hanschke, and M. Hecker. 2000. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J. Bacteriol. 182, 3259-3265 https://doi.org/10.1128/JB.182.11.3259-3265.2000
- Lange, R. and R. Hengge-Aronis. 1991. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol. Microbiol. 5, 49-59 https://doi.org/10.1111/j.1365-2958.1991.tb01825.x
- McLauchlin, J., R.T. Mitchell, W.J. Smerdon, and K. Jewell. 2004. Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. Int. J. Food Microbiol. 92, 15-33 https://doi.org/10.1016/S0168-1605(03)00326-X
- Muto, A., A. Fujihara, K.I. Ito, J. Matsuno, C. Ushida, and H. Himeno. 2000. Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells 5, 627-635 https://doi.org/10.1046/j.1365-2443.2000.00356.x
-
Nadon, C., B.M. Bowen, M. Wiedmann, and K.J. Boor. 2002.
$\sigma$ $^B$ contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect. Immun. 70, 3948-3952 https://doi.org/10.1128/IAI.70.7.3948-3952.2002 - Nair, S., E. Milohanic, and P. Berche. 2000. ClpC ATPase is required for cell adhesion and invasion of Listeria monocytogenes. Infect. Immun. 68, 7061-7068 https://doi.org/10.1128/IAI.68.12.7061-7068.2000
-
O'Byrne, C.P. and K.A.G. Karatzas. 2008. The role of sigma B (
$\sigma$ $^B$ ) in the stress adaptations of Listeria monocytogenes: overlaps between stress adaptation and virulence. Adv. Appl. Microbiol. 65, 115-140 https://doi.org/10.1016/S0065-2164(08)00605-9 -
Petersohn, A., H. Antelmann, U. Gerth, and M. Hecker. 1999. Identification and transcriptional analysis of new members of the
$\sigma$ $^B$ regulon in Bacillus subtilis. Microbiology 145, 869-880 https://doi.org/10.1099/13500872-145-4-869 - Price, C.W. 2000. Protective function and regulation of the general stress response in Bacillus subtilis and related gram-positive bacteria, pp. 179-197. In G. Storz and R. Hengge-Aronis (eds.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C., USA
- Price, C.W. 2002. General stress response, pp. 369-384. In A.L. Sonenshein, R. Losick, and J.A. Hoch (eds.), In Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology, Washington, D.C., USA
- Price, C.W., P. Fawcett, H. Crmonie, N. Su, C.K. Murphy, and P. Youngman. 2001. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol. Microbiol. 41, 757-774 https://doi.org/10.1046/j.1365-2958.2001.02534.x
-
Raengpradub, S., M. Wiedmann, and K.J. Boor. 2008. Comparative analysis of the
$\sigma$ $^B$ -dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl. Environ. Microbiol. 74, 158-171 https://doi.org/10.1128/AEM.00951-07 - Shin, J.H., M.S. Brody, and C.W. Price. Unpublished results
-
Spiegelhalter, F. and E. Bremer. 1998. Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the
$\sigma$ $^A$ -and$\sigma$ $^B$ -dependent stress-responsive promoters. Mol. Microbiol. 29, 285-296 https://doi.org/10.1046/j.1365-2958.1998.00929.x -
Sue, D., D. Fink, M. Wiedmann, and K.J. Boor. 2004.
$\sigma$ $^B$ -dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology 150, 3843-3855 https://doi.org/10.1099/mic.0.27257-0 -
Sue, D., K.J. Boor, and M. Wiedmann. 2003.
$\sigma$ $^B$ -dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology 149, 3247-3256 https://doi.org/10.1099/mic.0.26526-0 -
Vijay, K., M.S. Brody, E. Fredlund, and C.W. Price. 2000. A PP2C phophatase containing a PAS domain is required to convey signals of energy stress to the
$\sigma$ $^B$ transcription factor of Bacillus subtilis. Mol. Microbiol. 35, 180-188 https://doi.org/10.1046/j.1365-2958.2000.01697.x -
Voelker, U., A. Voelker, B. Maul, M. Hecker, A. Dufour, and W.G. Haldenwang. 1995. Separate mechanism activate
$\sigma$ $^B$ of Bacillus subtilis in response to environmental and metabolic stresses. J. Bacteriol. 177, 3771-3780 https://doi.org/10.1128/jb.177.13.3771-3780.1995 -
V
$\ddot{o}$ lker, U., B. Maul, and M. Hecker. 1999. Expression of the$\sigma$ $^B$ -dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J. Bacteriol. 181, 3942-3948 -
Von Blohn, C., B. Kempf, R.M. Kappes, and E. Bremer. 1997. Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor
$\sigma$ $^B$ . Mol. Microbiol. 25, 175-187 https://doi.org/10.1046/j.1365-2958.1997.4441809.x - Walker, S.J., P. Archer, and J.G. Banks. 1990. Growth of Listeria monocytogenes at refrigeration temperatures. J. Appl. Bacteriol. 68, 157-162 https://doi.org/10.1111/j.1365-2672.1990.tb02561.x
- Wemekamp-Kamphuis, H.H., R.D. Sleator, J.A. Wouters, C. Hill, and T. Abee. 2004. Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 70, 2912-2918 https://doi.org/10.1128/AEM.70.5.2912-2918.2004
-
Wemekamp-Kamphuis, H.H., J.A. Wouters, P.P.L.A. de Leeuw, T. Hain, T. Chakraborty, and T. Abee. 2004. Identification of sigma factor
$\sigma$ $^B$ -controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol. 70, 3457-3466 https://doi.org/10.1128/AEM.70.6.3457-3466.2004 -
Wiedmann, M., T.J. Arvik, R.J. Hurley, and K.J. Boor. 1998. General stress transcription factor
$\sigma$ $^B$ and its role in acid tolerance and virulence of Listeria monocytogenes. J. Bacteriol. 180, 3650-3656 -
Wise, A.A. and C.W. Price. 1995. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor
$\sigma$ $^B$ in response to environmental signals. J. Bacteriol. 177, 123-133 https://doi.org/10.1002/path.1711770204 - Zheleznova, E.E., P.N. Markham, A.A. Neyfakh, and R.G. Brennan. 1997. Preliminary structural studies on the multi-ligand-binding domain of the transcription activator, BmrR, from Bacillus subtilis. Protein Sci. 6, 2465-2468 https://doi.org/10.1002/pro.5560061122
-
Zheng, W. and S. Kathariou. 1995. Differentiation of epidemicassociated strains of Listeria monocytogenes by restriction fragment length polymorphism in a gene region essential for growth at low temperatures (4
$^{\circ}C$ ). Appl. Environ. Microbiol. 61, 4310-4314 - Yang, X., C.M. Kang, M.S. Brody, and C.W. Price. 1996. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev. 10, 2265-2275 https://doi.org/10.1101/gad.10.18.2265