Automatic Depth-of-Field Control for Stereoscopic Visualization

입체영상 가시화를 위한 자동 피사계 심도 조절기법

  • 강동수 (인하대학교 컴퓨터.정보공학과) ;
  • 김양욱 (홍익대학교 컴퓨터공학과) ;
  • 박준 (홍익대학교 컴퓨터공학과) ;
  • 신병석 (인하대학교 컴퓨터공학부)
  • Published : 2009.04.30

Abstract

In order to simulate a depth-of-field effect in real world, there have been several researches in computer graphics field. It can represent an out-of-focused scene by calculating focal plane. When a point in a 3D coordinate lies on further or nearer than focal plane, the point is presented as a blurred circle on image plane according to the characteristic of the aperture and the lens. We can generate a realistic image by simulating the effect because it provides an out-of-focused scene like human eye dose. In this paper, we propose a method to calculate a disparity value of a viewer using a customized stereoscopic eye-tracking system and a GPU-based depth-of-field control method. They enable us to generate more realistic images reducing side effects such as dizziness. Since stereoscopic imaging system compels the users to fix their focal position, they usually feel discomfort during watching the stereoscopic images. The proposed method can reduce the side effect of stereoscopic display system and generate more immersive images.

컴퓨터그래픽스에서 실세계의 피사계 심도를 표현하기 위해 많은 연구가 진행되어왔다. 피사계 심도는 초점이 맺히는 초점평면을 기준으로 초점거리보다 가깝거나 멀 경우 렌즈와 조리개의 특성에 따라 해당부분이 흐리게 표현되는 현상이다. 이것을 이용하면 사람의 눈처럼 수정체에 의한 아웃 포커스 현상을 표현할 수 있기 때문에 현실감 있는 영상 표현이 가능하다. 본 논문에서는 eye-tracking 기술을 이용하여 사용자의 착안점을 계산하고 이를 바탕으로 GPU기반의 피사계 심도 조절방법을 구현함으로써 입체영상을 볼 때 발생하는 부작용을 줄이는 방법을 제안한다. 일반적으로 입체영상은 사용자의 초점을 강제로 조정하기 때문에 장시간 입체영상을 보면 어지럼증 등 부작용이 나타난다. 제안하는 기법은 눈동자의 움직임을 실시간으로 추적하여 입체영상의 피사계 심도를 자동으로 조절할 수 있기 때문에 부작용 저감이 가능하며 몰입감을 향상시킬 수 있다.

Keywords

References

  1. L. Hodges, "Tutorial: Time-Multiplexed Stereoscopic Computer Graphics," IEEE Computer Graphics and Applications, Vol.12, No.2, pp. 20-30, 1992. https://doi.org/10.1109/38.124285
  2. D. Paul and L.R. Jamesr, "Circumventing Side Effects of Immersive Virtual Environments," HCI international 1997, Vol.21B, pp. 893-896, 1997.
  3. B. Judy, Side Effects of Virtual Environment: A Review of the Literature, DSTO Information Sciences Laboratory, 2003.
  4. H. Sebastien, L. Anatole, C. Remi, and C. Gery, "Depth-of- Field Blur Effects for First-person Navigation in Virtual Environments," Proceedings of the 2007 ACM symposium on Virtual Reality Software and Technology, pp. 203-206, 2007.
  5. C.H. Morimoto and M.R. Mimica, "Eye Gaze Tracking Techniques for Interactive Applications," Computer Vision and Image Understanding, pp. 4-24, 2005.
  6. Q. Ji and Z. Zhu, "Eye and Gaze Tracking for Interactive Graphic Display," Machine Vision and Applications, Vol.15, pp. 139-148, 2004.
  7. K.N. Kim and R.S. Ramakrishna, "Vision-Based Eye-Gaze Tracking for Human Computer Interface," IEEE Systems, Man, and Cybernetics '99, Vol.2, pp. 324-329, 1999.
  8. Y.M. Kwon, K.W. Jeon, J. Ki, Q.M. Shhab, S. Jo, and S.K. Kim, "3D Gaze Estimation and Interaction to Stereo Display," The International Journal of Virtual Reality, pp. 41-45, 2006.
  9. M. Potmesil and R.V. Liere, "Synthetic Image Generation with a Lens and Aperture Camera Model," ACM Transactions on Graphics, Vol.1, pp. 85-108, 1982. https://doi.org/10.1145/357299.357300
  10. J. Demers, Depth of Field: A Survey of Techniques, GPU Gems 3, Fernando R.,(Ed), Addison Wesley, pp. 375-555, 2004.
  11. B.A. Barsky, D.R. Horn, S.A. Klein, J.A. Pang, and M. Yu, "Camera Models and Optical Systems Used in Computer Graphics : Part I and II," Computational Science and Its Applications(ICCSA) 2003, Vol.2669, pp. 246-265, 2003.
  12. B. Marcelo, F. Pere, and S.C. Daniel, "Real-Time, Accurate Depth of Field using Anisotropic Diffusion and Programable Graphics Card," 3D Data Processing, Visual and Transmission(3DPVT) 2004, pp. 767-773, 2004.
  13. B.A. Barsky, "Vision-realistic rendering: Simulation of the Scanned Foveal Image from Wavefront Data of Human Subjects," Proceedings of Symposium on Applied Perception in Graphics and Visualization, pp. 73-81, 2004.
  14. M. Kraus and M. Strengert, "Depth-of-Field Rendering by Pyramidal Image Processing," EUROGRAPHICS 2007, Vol.26, No.3, pp. 645-654, 2007.
  15. S. Adelson and L. Hodges, "Stereoscopic Ray Tracing," The Visual Computer, pp. 127-144, 1993.
  16. L. Hodges, "Tutorial: Time-Multiplexed Stereoscopic Computer Graphics," IEEE Computer Graphics and Applications, Vol.12, No.2, pp. 20-30, 1992. https://doi.org/10.1109/38.124285
  17. S. Patoor and M. Wopking, "3-D Display: a Review of Current Technologies," Displays, Vol.17, pp. 100-110, 1997. https://doi.org/10.1016/S0141-9382(96)01040-2
  18. A.J. Woods, "Optimal Usage of LCD Projectors for Polarised Stereoscopic Projection Stereoscopic Projection," Proceedings of Stereoscopic Displays and Virtual Reality System VIII, Vol.4297, pp. 5-7, 2001.
  19. J.E, Melzer and K. Moffitt, Head Mounted Display: Designing for the User, New York, Publisher: McGraw-Hill, 1997.
  20. M. Halle, "Auto stereoscopic Displays and Computer Graphics," Computer Graphics on Proceeding of SIGGRAPH' 97, pp. 58-62, 1997.
  21. F.L. Hodges, "Tutorial: Time-Multiplexed Stereoscopic Computer Graphics," IEEE Computer Graphics & Applications, pp. 20-30, 1992.
  22. ITU-R Rec. BT. 500-11, Methodology for the Subjective Assessment of the Quality of Television Pictures, Geneva, 2002.