DOI QR코드

DOI QR Code

An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation

  • Darilmaz, Kutlu (Department of Civil Engineering, Istanbul Technical University)
  • Received : 2009.04.20
  • Accepted : 2009.09.24
  • Published : 2009.11.30

Abstract

In this paper a four-node hybrid stress element is proposed for analysing arbitrarily shaped plates on a two parameter elastic foundation. The element is developed by combining a hybrid plate stress element and a soil element. The formulation is based on Hellinger-Reissner variational principle in which both inter element compatible boundary displacement and equilibrated stress fields for the plate as well as the foundation are chosen separately. This formulation also allows a low order polynomial interpolation functions. Numerical examples are presented to show that the validity and efficiency of the present element for the plate analysis resting on an elastic foundation. In these examples the effect of soil depth, interaction between closed plates on soil parameters, comparison with Winkler hypothesis is investigated.

Keywords

References

  1. Abdallaa, J.A. and Ibrahimb, A.M. (2008), 'Development of a discrete Reissner-Mindlin element on Winkler foundation', Finite Elem. Anal. Des., 42, 740-748 https://doi.org/10.1016/j.finel.2005.11.004
  2. Ayvaz, Y. and O uzhan, C.B. (2008), 'Free vibration analysis of plates resting on elastic foundations using modified Vlasov model', Struct. Eng. Mech., 28(6), 635-658 https://doi.org/10.12989/sem.2008.28.6.635
  3. Celik, M. and Saygun, A. (1999), 'A Method for the analysis of plates on a two-parameter foundation', Int. J. Solids Struct., 36, 2891-915 https://doi.org/10.1016/S0020-7683(98)00135-8
  4. Celik, M. and Omurtag, M.H. (2005), 'Determination of the Vlasov foundation parameters quadratic variation of elasticity modulus using FE analysis', Struct. Eng. Mech., 19(6), 619-637 https://doi.org/10.12989/sem.2005.19.6.619
  5. Dar lmaz (2005), 'An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates', Struct. Eng. Mech., 19(2), 199-215 https://doi.org/10.12989/sem.2005.19.2.199
  6. Eratli, N. and Aköz, A.Y. (1997), 'The mixed finite element formulation for the thick plates on elastic foundations', Comput. Struct., 65(4), 515-529 https://doi.org/10.1016/S0045-7949(96)00403-8
  7. Gendy, A.S. and Saleeb, A.F. (1999) 'Effective modeling of beams with shear deformations on elastic foundation', Struct. Eng. Mech., 8(6), 607-622 https://doi.org/10.12989/sem.1999.8.6.607
  8. Guler, K. and Celep, Z. (1995), 'Static and dynamic responses of a circular plate on a tensionless elastic foundation', J. Sound Vib., 183(2), 185-195 https://doi.org/10.1006/jsvi.1995.0248
  9. Nogami, T. and Lam, Y.C. (1987), 'Two parameter layer model for analysis of slabs on elastic foundations', J. Eng. Mech., 113(9), 1279-1291 https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1279)
  10. Ozgan, K. and Dalo lu, A.T. (2008), 'Effect of transverse shear strains on plates resting on elastic foundation using modified Vlasov model', Thin Wall. Struct., 46, 1236-1250 https://doi.org/10.1016/j.tws.2008.02.006
  11. Pasternak, P.L. (1954), 'On a new method of analysis of an elastic foundation by means of two foundation constants', Gos. Izd. Lip. po Strait i Arkh. Moscow, (in Russian)
  12. Pian, T.H.H. and Chen, D.P. (1982), 'Alternative ways for formulation of hybrid stress elements', Int. J. Numer. Meth. Eng., 18, 1679-1684 https://doi.org/10.1002/nme.1620181107
  13. Saygun, A. and Çelik, M. (2003), 'Analysis of circular plates on two - parameter elastic foundation', Struct. Eng. Mech., 15(2), 249-267 https://doi.org/10.12989/sem.2003.15.2.249
  14. Vlasov, V.Z. and Leont’ev, U.N. (1966), 'Beams, plates and shells on elastic foundation', Israel Program for Scientific Translation, Jerusalem
  15. Vallabhan, C.V.G. and Das, Y.C. (1988), 'A parametric study of beams on elastic foundations', J. Eng. Mech. Div., 114(12), 2072-2082 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2072)
  16. Vallabhan, C.V.G., Straughan, W.T. and Das, Y.C. (1991), 'Refined model for analysis of plates on elastic foundation', J. Eng. Mech., 117(12), 2830-2844 https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2830)
  17. Wang, Y.H., Tham, L.G. and Cheung, Y.K. (2005), 'Beams and plates on elastic foundations: a review', Prog. Struct. Eng. Mater., 7(4), 174-182 https://doi.org/10.1002/pse.202
  18. Washizu, K. (1982), Variational Method in Elasticity and Plasticity, Pergamon Press, Oxford 3rd. Edn
  19. Winkler, E. (1867), Die Lehre von der Elastizit$\ddot{a}$t und Festigkeit. Dominicus, Prag

Cited by

  1. Development of Analysis Method for Mat Foundations Considering Coupled Soil Springs vol.30, pp.12, 2014, https://doi.org/10.7843/kgs.2014.30.12.41
  2. 3D analytical method for mat foundations considering coupled soil springs vol.8, pp.6, 2015, https://doi.org/10.12989/gae.2015.8.6.845
  3. A parametric study for thick plates resting on elastic foundation with variable soil depth vol.83, pp.4, 2013, https://doi.org/10.1007/s00419-012-0703-8
  4. Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates vol.11, pp.5, 2009, https://doi.org/10.12989/scs.2011.11.5.359
  5. Nonlinear vibration of hybrid composite plates on elastic foundations vol.37, pp.4, 2009, https://doi.org/10.12989/sem.2011.37.4.367