References
- Bahattin Kanber, and Yavuz Bozkurt (2006), "Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements", Acta Mech. Sinica, 22, 355-365 https://doi.org/10.1007/s10409-006-0012-y
- Choi, C.K. and Park, Y.M. (1999), "Quadratic NMS Mindlin-plate-bending element", Int. J. Numer. Meth. Eng.,46(8), 1273-1289 https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1273::AID-NME754>3.0.CO;2-N
- Choi, C.K., Lee, T.Y. and Chung, K.Y. (2002), "Direct modification for nonconforming elements with drilling DOF", Int. J. Numer. Meth. Eng., 55(12), 1463-1476 https://doi.org/10.1002/nme.550
- Chen, Wanji and Cheung, Y.K. (1987), "A new approach for the hybrid element method", Int. J. Numer. Meth.Eng., 24,1697-1709 https://doi.org/10.1002/nme.1620240907
- Darlmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlinplates", Struct. Eng. Mech., 19(2), 199-215 https://doi.org/10.12989/sem.2005.19.2.199
- Dhananjaya, H.R., Nagabhushanam, J. and Pandey, P.C. (2007), "Bilinear plate bending element for thin and moderately thick plates using Integrated Force Method", Struct. Eng. Mech., 26(1), 43-68 https://doi.org/10.12989/sem.2007.26.1.043
- Dimitris, K., Hung, L.T. and Atluri, S.N. (1984), "Mixed finite element models for plate bending analysis, Anew element and its applications", Comput. Struct., 19(4), 565-581 https://doi.org/10.1016/0045-7949(84)90104-4
- Jane Liu, Riggs, H.R. and Alexander Tessler (2000), "A four node shear-deformable shell element developed via explicit Kirchhoff constraints", Int. J. Numer. Meth. Eng., 49, 1065-1086 https://doi.org/10.1002/1097-0207(20001120)49:8<1065::AID-NME992>3.0.CO;2-5
- Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996), "Development of finite elements for two- dimensional structural analysis using Integrated Force Method", Comput. Struct., 59(4), 691-706 https://doi.org/10.1016/0045-7949(95)00294-4
- Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996), "Three dimensional structural analysis by Integrated Force Method", Comput. Struct., 58(5), 869-886 https://doi.org/10.1016/0045-7949(95)00171-C
- Kaneko, L., Lawo, H. and Thierauf, G. (1983), "On computational procedures for the force method", Int. J. Numer. Meth. Eng., 18, 1469-1495 https://doi.org/10.1002/nme.1620181004
- Krishnam Raju, N.R.B. and Nagabhushanam, J. (2000), "Non-linear structural analysis using integrated forcemethod", Sadhana, 25(4), 353-365 https://doi.org/10.1007/BF03029720
- Kutlu Darlmaz and Nahit Kumbasar (2006), "An 8-node assumed stress hybrid element for analysis of shells",Comput. Struct., 84, 1990-2000 https://doi.org/10.1016/j.compstruc.2006.08.003
- Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, Dover, New York
- Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon press, Oxford
- Nagabhushanam, J. and Patnaik, S.N. (1990), "General purpose program to generate compatibility matrix for the Integrated Force Method", AIAA J., 28, 1838-1842 https://doi.org/10.2514/3.10488
- Nagabhushanam, J. and Srinivas, J. (1991), "Automatic generation of sparse and banded compatibility matrix for the Integrated Force Method, Computer Mechanics 91", International Conference on Computing in Engineering Science, Patras, Greece, 20-25
- Ozgan, K. and Ayse, T. Daloglu (2007), "Alternate plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86 https://doi.org/10.12989/sem.2007.26.1.069
- Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 6, 237-251 https://doi.org/10.1002/nme.1620060209
- Patnaik, S.N. (1986), "The variational energy formulation for the Integrated Force Method", AIAA J., 24, 129-137 https://doi.org/10.2514/3.9232
- Patnaik, S.N., Berke, L. and Gallagher, R.H. (1991), "Integrated force method verses displacement method forfinite element analysis", Comput. Struct., 38(4), 377-407 https://doi.org/10.1016/0045-7949(91)90037-M
- Patnaik, S.N., Hopkins, D.A. and Coroneos, R. (1986), "Structural optimization with approximate sensitivities",Comput. Struct., 58, 407-418 https://doi.org/10.1016/0045-7949(95)00123-X
- Patnaik, S.N., Coroneos, R.M. and Hopkins, D.A. (2000), "Compatibility conditions of structural mechanics",Int. J. Numer. Meth. Eng., 47, 685-704 https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<685::AID-NME788>3.0.CO;2-Y
- Patnaik, S.N. and Yadagiri, S. (1976), "Frequency analysis of structures by Integrated Force Method", Comput.Meth. Appl. Mech. Eng., 9, 245-265 https://doi.org/10.1016/0045-7825(76)90030-X
- Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements", Int. J. Numer.Meth. Eng., 19, 1741-1752
- Przemieniecki, J.S. (1968), Theory of Matrix Structural Analysis, McGraw Hill, New York
- Razzaque, A. (1973), "Program for triangular plate bending element with derivative smoothing", Int. J. Numer.Meth. Eng., 6, 333-345 https://doi.org/10.1002/nme.1620060305
- Reissner, E. (1945), "The effect of transverse shear deformation on bending of plates", J. Appl. Mech., 12, A69-A77
- Robinson, J. (1973), Integrated Theory of Finite Elements Methods, Wiley, New York
- Robinson, J. and Haggenmacher, G.W. (1971), "Some new developments in matrix force Analysis, In Recent advances in matrix methods of structural analysis and design", University Alabama, 183-228
- Spilker, R.L. (1982), "Invariant 8-node hybrid-stress elements for thin and moderately thick plates", Int. J.Numer. Meth. Eng., 18, 1153-1178 https://doi.org/10.1002/nme.1620180805
- Kim, S.H. and Choi, C.K. (2005), "Modelling of plates and shells: Improvement of quadratic finite element for Mindlin plate bending", Int. J. Numer. Meth. Eng., 34(1), 197-208
- Timoshenko, S.P. and Krieger, S.W. (1959), Theory of Plates and Shells, Second Edition, McGraw_Hill international editions
Cited by
- Development of the large increment method in analysis for thin and moderately thick plates vol.19, pp.3, 2014, https://doi.org/10.1007/s12204-014-1498-2
- Two higher order hybrid-Trefftz elements for thin plate bending analysis vol.85, 2014, https://doi.org/10.1016/j.finel.2014.03.003
- New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM vol.41, pp.2, 2012, https://doi.org/10.12989/sem.2012.41.2.205
- Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin–Reissner plates vol.34, pp.2, 2017, https://doi.org/10.1108/EC-04-2016-0143
- New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method vol.36, pp.5, 2010, https://doi.org/10.12989/sem.2010.36.5.625
- Developments of Mindlin-Reissner Plate Elements vol.2015, 2015, https://doi.org/10.1155/2015/456740
- A parametric study for thick plates resting on elastic foundation with variable soil depth vol.83, pp.4, 2013, https://doi.org/10.1007/s00419-012-0703-8
- Application of the dual integrated force method to the analysis of the off-axis three-point flexure test of unidirectional composites vol.50, pp.3, 2016, https://doi.org/10.1177/0021998315576377
- Comparison between the stiffness method and the hybrid method applied to a circular ring vol.40, pp.2, 2018, https://doi.org/10.1007/s40430-018-1013-z
- Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates vol.11, pp.5, 2009, https://doi.org/10.12989/scs.2011.11.5.359
- Correction of node mapping distortions using universal serendipity elements in dynamical problems vol.40, pp.2, 2011, https://doi.org/10.12989/sem.2011.40.2.245