References
- Aköz, A.Y. and Kadio lu, F. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comput. Struct., 60, 643-651 https://doi.org/10.1016/0045-7949(95)00418-1
- Banan, M.R., Karami, G. and Farshad, M. (1989), "Finite element analysis of curved beams on elastic foundation", Comput. Struct., 32, 45-53 https://doi.org/10.1093/comjnl/32.1.45
- Bathe, K.J. (1996), Finite Element Procedures. Englewood Cliffs, New York, Prentice-Hall
- Chakraborty, S. and Sarkar, S.K. (2000), "Analysis of a curved beam on uncertain elastic foundation" Finite Elem. Anal. Des., 36, 73-82 https://doi.org/10.1016/S0168-874X(00)00009-3
- Chang, S.P., Kim, M.Y. and Kim, S.B. (1996), "Stability of shear deformable thin-walled space frames and circular arches", J. Eng. Mech., 122, 844-854 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:9(844)
- Choi, C.K. and Hong, H.S. (2001), "Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation", Struct. Eng. Mech., 12, 313-328 https://doi.org/10.12989/sem.2001.12.3.313
- Chucheepsakul, S. and Saetiew, W. (2002), "Free vibrations of inclined arches using finite elements", Struct.Eng. Mech., 13, 713-730 https://doi.org/10.12989/sem.2002.13.6.713
- Dabrowski, R. (1968), Curved Thin-walled Girders. Cement and concrete association
- Dube, G.P. and Dumir, P.C. (1996), "Tapered thin open section beams on elastic foundation I. buckling analysis",Comput. Struct., 61, 845-857 https://doi.org/10.1016/0045-7949(96)00112-5
- Heins, C.P. (1975), Bending and Torsional Design in Structural Members. D.C. Health and Company
- Hetenyi, M. (1946), Beams on Elastic Foundations. Scientific Series, Vol. XVI. Ann Arbor, University ofMichigan Press
- Hu, N., Hu, B., Fukunaga, H. and Sekine, H. (1999), "Two kinds of C°-type elements for buckling analysis of thin-walled curved beams", Comput. Meth. Appl. Mech. Eng., 171, 87-108 https://doi.org/10.1016/S0045-7825(98)00246-1
- Kim, M.Y., Kim, N.I. and Kim, S.B. (2005), "Spatial stability of shear deformable curved beams with nonsymmetric thin-walled sections. II: F.E. solutions and parametric study", Comput. Struct., 83, 2542-2558 https://doi.org/10.1016/j.compstruc.2005.07.003
- Kim, M.Y., Min, B.C. and Suh, M.W. (2000a), "Spatial stability of non-symmetric thin-walled curved beams I: analytical approach", J. Eng. Mech., 126, 497-505 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:5(497)
- Kim, M.Y., Min, B.C. and Suh, M.W. (2000b), Spatial stability of non-symmetric thin-walled curved beams II:Numerical approach, J. Eng. Mech., 126, 506-514
- Kim, M.Y., Kim, S.B. and Kim, N.I. (2005), "Spatial stability of shear deformable curved beams with nonsymmetric thin-walled sections. I: Improved stability formulation", Comput. Struct., 83, 2525-2541 https://doi.org/10.1016/j.compstruc.2005.07.004
- Kim, N.I., Seo, K.J. and Kim, M.Y. (2003), "Free vibration and spatial stability of non-symmetric thin-walled curved beams with variable curvatures", Int. J. Solids Struct., 40, 3107-3128 https://doi.org/10.1016/S0020-7683(03)00113-6
- Lee, B.K., Oh, S.J. and Park, K.K. (2002), "Free vibrations of shear deformable circular curved beams resting on elastic foundations", Int. J. Struct. Stab. Dyn., 2, 77-97 https://doi.org/10.1142/S0219455402000440
- Papangelis, T.P. and Trahair, N.S. (1987), "Flexural-torsional buckling of arches", J. Eng. Mech., 113, 889-906
- Rajasekaran, S. and Padmanabhan, S. (1989), "Equations of curved beams", J. Eng. Mech., 115, 1094-1111 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1094)
- Rodriquez, D.A. (1961), "Three-dimensional bending of a ring on an elastic foundation", J. Appl. Mech., 28,461-463 https://doi.org/10.1115/1.3641732
- Saleeb, A.F. and Gendy, A.S. (1991), "Shear-flexible models for spatial bucking of thin-walled curved beams",Int. J. Numer. Meth. Eng., 31, 729-757 https://doi.org/10.1002/nme.1620310407
- Sengupta, D. and Dasgupta, S. (1987), "Horizontally curved isoparametric beam element with or without elastic foundation including effect of shear deformation", Comput. Struct., 29, 967-973 https://doi.org/10.1016/0045-7949(88)90322-7
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, 2nd Ed. New York: McGraw-Hill
- Trahair, N.S. and Papangelis, T.P. (1987), "Flexural-torsional buckling of monosymmetric arches", J. Eng. Mech.,113, 2271-2288 https://doi.org/10.1061/(ASCE)0733-9445(1987)113:10(2271)
- Usuki, S., Kano, T. and Watanabe, N. (1979), "Analysis of thin walled curved members in account for large torsion", Proc. JSCE, 290, 1-15
- Vallabhan, C.V.G. and Das, Y.C. (1991), "Modified Vlasov model for beans on elastic foundations", J. Geotech.Eng., 117, 956-966 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(956)
- Vlasov, V.Z. (1961), Thin-walled Elastic Beams, 2nd Ed. National Science Foundation, Washington, D.C
- Wang, T.M. and Brannen, W.F. (1982), "Natural frequencies for out-of-plane vibrations of curved beams onelastic foundations", J. Sound Vib., 84, 241-246
- Watanabe, N., Kano, T. and Usuki, S. (1982), "Analysis of large torsion of a thin walled curved beam based ondisplacement field theory", Proc. JSCE, 317, 31-45
- Wendroff, B. (1966), Theoretical Numerical Analysis. New York: Academic Press
- Wilson, J.F. and Lee, B.K. (1995), "In-plane free vibrations of catenary arches with unsymmetric axes", Struct.Eng. Mech., 3, 511-525 https://doi.org/10.12989/sem.1995.3.5.511
- Wilson, J.F., Lee, B.K. and Oh, S.J. (1994), "Free vibrations of circular arches with variable cross-section",Struct. Eng. Mech., 2, 345-357 https://doi.org/10.12989/sem.1994.2.4.345
- Wolfram, S. (2005), Mathematica 5.2, a System for doing Mathematics by Computer. Redwood City, California,Addison-Wesley
Cited by
- Influence of a soft FGM interlayer on contact stresses under a beam on an elastic foundation vol.58, pp.4, 2016, https://doi.org/10.12989/sem.2016.58.4.613
- Finite Element Formulation for Linear Stability Analysis of Axially Functionally Graded Nonprismatic Timoshenko Beam pp.1793-6764, 2018, https://doi.org/10.1142/S0219455419500020
- Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect vol.38, pp.5, 2009, https://doi.org/10.12989/sem.2011.38.5.573
- Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium vol.40, pp.4, 2009, https://doi.org/10.12989/sem.2011.40.4.583
- On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method vol.62, pp.6, 2009, https://doi.org/10.12989/sem.2017.62.6.759
- Improved Finite Element Model for Lateral Stability Analysis of Axially Functionally Graded Nonprismatic I-beams vol.19, pp.9, 2019, https://doi.org/10.1142/s0219455419501086