참고문헌
- Akoz, A.Y., Omurtag, M.H. and Dogruoglu, A.N. (1991), 'Mixed finite element formulation of three dimensional straight and circular bars', Int. J. Solids Struct., 28, 225-234 https://doi.org/10.1016/0020-7683(91)90207-V
- Banan, M.R., Karami, G. and Farshad, M. (1989), 'Finite element analysis of curved beams on elastic foundations', Comput. Struct., 32, 45-53 https://doi.org/10.1093/comjnl/32.1.45
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, New Jersey
- Gimena, F.N., Gonzaga, P. and Gimena, L. (2003), 'New procedure to obtain the stiffness and transfer matrices of an elastic linear element', Proceedings of 16th Engineering Mechanics Conference, ASCE, Seattle, July
- Gimena, F.N., Gonzaga, P. and Gimena, L. (2008), '3D-curved beam element with varying cross-sectional area under generalized loads', Eng. Struct., 30, 404-411 https://doi.org/10.1016/j.engstruct.2007.04.005
- Haktanir, V. (1995), 'The complementary functions method for the element stiffness matrix of arbitrary spatial bars of helicoidal axes', Int. J. Numer. Meth. Eng., 38, 1031-1056 https://doi.org/10.1002/nme.1620380611
- Just, D.J. (1982), 'Circularly curved beams under plane loads', J. Struct. Div., 108, 1858-1873
- Kardestuncer, H. (1974), Elementary Matrix Analysis of Structures. McGraw-Hill, New York
- Lance, G.N. (1960), Numerical Methods for High Speed Computers. Iliffe, London
- Lee, H.P. (1969), 'Generalized stiffness matrix of a curved-beam element', AIAA J., 7, 2043-2045 https://doi.org/10.2514/3.5513
- Leontovich, V. (1959), Frames and Arches; Condensed Solutions for Structural Analysis. McGraw-Hill, New York
- Litewka, P. and Rakowski, J. (1996), 'The exact thick arch finite element', Comput. Struct., 31, 997-1002 https://doi.org/10.1016/0045-7949(89)90284-8
- Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity. Dover, New York
- Marquis, J.P. and Wang, TM. (1989), 'Stiffness matrix of parabolic beam element', Comput. Struct., 6, 863-870 https://doi.org/10.1016/0045-7949(89)90271-X
- Molari, L. and Ubertini, F. (2006), 'A flexibility-based model for linear analysis of arbitrarily curved arches', Int. J. Numer. Meth. Eng., 65, 1333-1353 https://doi.org/10.1002/nme.1497
- Moris, D.L. (1968), 'Curved beam stiffness coefficients', J. Struct. Div., 94, 1165-1178
- Pestel, E.C. and Leckie, E.A. (1963), Matrix Methods in Elastomechanics. McGraw Hill, New York
- Rahman, M. (1991), Applied Differential Equations for Scientists and Engineers: Ordinary Differential Equations, Computational Mechanics Publications, Glasgow
- Saleeb, A.F. and Chang, T.Y. (1987), 'On the hybrid-mixed formulation C0 curved beam elements', Comput. Method. Appl. M., 60, 95-121 https://doi.org/10.1016/0045-7825(87)90131-9
- Scordelis, A.C. (1960), 'Internal forces in uniformly loaded helicoidal girders', J. ACI, 31, 1013-1026
- Sokolnikoff, I.S. and Redeffer, R.M. (1958), Mathematics of Physics and Modern Engineering, McGraw-Hill, Tokyo
- Shi, G. and Voyiadjis, G.Z. (1991), 'Simple and efficient shear flexible two-node arch/beam and four-node cylindrical shell/plate finite elements', Int. J. Numer. Meth. Eng., 31, 759-776 https://doi.org/10.1002/nme.1620310408
- Timoshenko, S. (1957), Strength of Materials. D. Van Nostrand Company, New York
- Tufekci, E. and Arpaci, A. (2006), 'Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations', Struct. Eng. Mech., 22, 131-150
- Yamada, Y. and Ezawa, Y. (1977), 'On curved finite elements for the analysis of curved beams', Int. J. Numer. Meth. Eng., 11, 1635-1651 https://doi.org/10.1002/nme.1620111102
- Yu, A., Fang, M. and Ma, X. (2002), 'Theoretical research on naturally curved and twisted beams under complicated loads', Comput. Struct., 80, 2529-2536 https://doi.org/10.1016/S0045-7949(02)00329-2
- Zheng, X.J., Wang, X. and Zhou, Y.H. (2000), 'Magnetoelastic analysis of non-circular superconducting partial torus', Int. J. Solids Struct., 37, 563-576 https://doi.org/10.1016/S0020-7683(99)00018-9
피인용 문헌
- Closed-form solutions on bending of cantilever twisted Timoshenko beams under various bending loads vol.35, pp.2, 2010, https://doi.org/10.12989/sem.2010.35.2.261
- Curved beam through matrices associated with support conditions vol.76, pp.3, 2009, https://doi.org/10.12989/sem.2020.76.3.395