참고문헌
- ACI 544.2R-89. (1989 Reapproved 1999), "Measurement of properties of fiber reinforced concrete"
- Almansa, E.M. and Cánovas, M.F. (1999), “Behaviour of normal and steel fiber-reinforced concrete under impact of small projectiles”, Cement Concrete Res., 29, 1807-1814 https://doi.org/10.1016/S0008-8846(99)00174-X
- Barr, P. (1990), Guidelines for the Design and Assessment of Concrete Structures Subjected to Impact, UK Atomic Energy Authority Safety and Reliability Directorate, London
- Bludau, C., Keuser, M.D. and Kustermann, A. (2006), "Perforation resistance of high-strength concrete panels", ACI Struct. J., 103(2), 188-195
- Corbett, G.G., Reid, S.R. and Johnson, W.J. (1996), "Impact loading of plates and shells by free-flying projectiles: A review", Int. J. Impact Eng., 18(2), 141-230 https://doi.org/10.1016/0734-743X(95)00023-4
- Dancygier, A.N. and Yankelevsky, D.Z. (1996), "High strength concrete response to hard projectile impact", Int. J. Impact Eng., 18(6), 583-599 https://doi.org/10.1016/0734-743X(95)00063-G
- Dancygier, A.N. and Yankelevsky, D.Z. (1999), "Effects of reinforced concrete properties on resistance to hard projectile impact", ACI Struct. J., 96(2), 259-167
- Dancygier, A.N., Yankelevsky, D.Z. and Jaegermann, C. (2007), "Response of high performance concrete plates to impact of non-deforming projectiles", Int. J. Impact Eng., 34(11), 1768-1779 https://doi.org/10.1016/j.ijimpeng.2006.09.094
- Dolce, M., Cardone, D., Moroni, C. and Nigro, D. (2007), "Dynamic response of a volcanic shelter subjected to ballistic impacts", Int. J. Impact Eng., 34, 681-701 https://doi.org/10.1016/j.ijimpeng.2006.01.002
- Dubey, A. and Banthia, N. (1998), "Influence of high-reactivity metakaoline and silica fume on the flexural toughness of high-performance steel fiber-reinfoced concrete", ACI Mat. J., 95(3), 284-292
- Elfahal, M.M., Krauthammer, T., Ohno, Beppu, T. M. and Mindess, S. (2005), "Size effect for normal strength concrete cylinders subjected to axial impact", Int. J. Impact Eng., 31, 461-481 https://doi.org/10.1016/j.ijimpeng.2004.01.003
- Forrestal, M.J., Altman, B.S., Cargile, J.D. and Hanchak, S.J. (1994), "An empirical equation for penetration depth of ogive-nose projectiles into concrete targets", Int. J. Impact Eng., 15, 395-405 https://doi.org/10.1016/0734-743X(94)80024-4
- Forrestal, M.J., Frew, D.J., Hanchak, S.J. and Brar, N.S. (1996), "Penetration of grout and concrete targets with ogive-nose steel projectiles", Int. J. Impact Eng., 18(5), 465-476 https://doi.org/10.1016/0734-743X(95)00048-F
- Frew, D.J., Hanchak, S.J., Green, M.L. and Forrestal, M.J. (1998), "Penetration of concrete targets with ogivenose steel rods", Int. J. Impact Eng., 21(6), 489-497 https://doi.org/10.1016/S0734-743X(98)00008-6
- Frew, D.J., Forrestal, M.J. and Cargile, J.D. (2006), "The effect of concrete target diameter on projectile deceleration and penetration depth", Int. J. Impact Eng., 32, 1584-1594 https://doi.org/10.1016/j.ijimpeng.2005.01.012
- Gold, V.M., Vradis G.C. and Pearson J.C. (1996), "Concrete penetration by eroding projectiles: experiments and analysis", J. Eng. Mech., ASCE, 122(2), 145-152 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2(145)
- Grote, D.L., Park, S.W. and Zhou, M. (2001), "Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization", Int. J. Impact Eng., 25, 869-886 https://doi.org/10.1016/S0734-743X(01)00020-3
- Haldar, A. and Hamieh, H. (1984), "Local effect of solid missiles on concrete structures", J. Struct. Div., ASCE,110(5) https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(948)
- Hughes, G. (1984), "Hard missile impact on reinforced concrete", Nucl. Eng. Des., 77, 23-35 https://doi.org/10.1016/0029-5493(84)90058-X
- Jensen, J.J., Høiseth, K.V. and Hansen, E.A. (1993), "Ductility of high strength concrete at high rate loading", Proceedings 3rd Symposium: Utilization of High Strength Concrete, Lillehammer June, 241-250
- Kennedy, R.P. (1976), "A Review of procedures for the analysis and design of concrete structures to resistmissile impact effects", Nucl. Eng. Des., 37, 183-203 https://doi.org/10.1016/0029-5493(76)90015-7
- Krauthammer, T., Elfahal, M.M., Lim, J., Ohno, T., Beppu, M. and Markeset, G. (2003), "Size effect for highstrength concrete cylinders subjected to axial impact", Int. J. Impact Eng., 28, 1001-1016 https://doi.org/10.1016/S0734-743X(02)00166-5
- Li, Q.M. and Chen, X.W. (2003), "Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile", Int. J. Impact Eng., 28, 93-116 https://doi.org/10.1016/S0734-743X(02)00037-4
- Li, Q.M. and Meng, H. (2003a), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", Int. J. Solids Struct., 40, 343-360 https://doi.org/10.1016/S0020-7683(02)00526-7
- Li, Q.M., Reid, S.R., Wen, H.M. and Telford, A.R. (2005), "Local impact effects of hard missiles on concrete targets", Int. J. Impact Eng., 32, 224-284 https://doi.org/10.1016/j.ijimpeng.2005.04.005
- Li, Q.M., Ye, Z.Q., Ma, G.W. and Reid, S.R. (2007), "Influence of overall structural response on perforation of concrete targets", Int. J. Impact Eng., 34, 926-941 https://doi.org/10.1016/j.ijimpeng.2006.03.005
- Li, Q.M., Lu, Y.B. and Meng, H. (2009), "Further investigation on the dynamic compressive strength enhancement of concrete like materials based on split Hopkinson pressure bar tests Part II: Numerical Simulations", Int. J. Impact Eng., (in press) https://doi.org/10.1016/j.ijimpeng.2009.04.010
- Luo, X., Sun, W. and Chan, S.Y.N. (2000), "Characteristics of high-performance steel fiber-reinforced concrete subject to high velocity impact", Cement Concrete Res., 30, 907-914 https://doi.org/10.1016/S0008-8846(00)00255-6
- Maalej, M., Quek, S.T. and Zhang, J. (2005), "Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact", J. Mater. Civil Eng., ASCE, 17(2), 143-52 https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(143)
- Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", ACI Mater. J., 95(6),735-739
- Mindess, S., Young, J.F. and Darwin, D. (2003), Concrete, 2nd Edn. Pearson Education, Inc. Upper Saddle RiverNJ, p.358
- Mougin, J.P., Perrotin, P., Mommessin, M., Tonnelo, J. and Agbossou, A. (2005), "Rock fall impact on reinforced concrete slab: an experimental approach", Int. J. Impact Eng., 31, 169-183 https://doi.org/10.1016/j.ijimpeng.2003.11.005
- Park, S.W., Xia, Q. and Zhou, M. (2001), "Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation", Int. J. Impact Eng., 25, 887-910 https://doi.org/10.1016/S0734-743X(01)00021-5
- Reinhardt, H.W. (1987), "Simple relations for the strain rate influence of concrete. Darmstadt concrete", Ann. J. Conc. Conc. Struct., Vol. 2
- Riera, J.D. (1989), "Penetration, scabbing and perforation of concrete structures hit by solid missiles", Nucl. Eng. Des., 115, 121-131 https://doi.org/10.1016/0029-5493(89)90265-3
- Silling, S.A. and Forrestal, M.J. (2007), "Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets", Int. J. Impact Eng., 34(11), 1814-1820 https://doi.org/10.1016/j.ijimpeng.2006.10.008
- Sliter G.E. (1980), "Assessment of empirical concrete impact formulas", J. Struct. Div., ASCE, 106(5), 1023-1045
- Soroka, I. (1993), Concrete in Hot Environments, Elsevier Applied Science, London and New York, p.123
- Sukontasukkul, P., Nimityongskul, P. and Mindess, S. (2004), "Effect of loading rate on damage of concrete", Cement Concrete Res., 34, 2127-2134 https://doi.org/10.1016/j.cemconres.2004.03.022
- Sukontasukkul, P., Mindess, S. and Banthia, N. (2005), "Properties of confined fibre-reinforced concrete under uniaxial compressive impact", Cement Concrete Res., 35, 11-18 https://doi.org/10.1016/j.cemconres.2004.05.011
- Vossoughi, F., Ostertag, C.P., Monteiro, P.J.M. and Johnson, G.C. (2007), "Resistance of concrete protected by fabric to projectile impact", Cement Concrete Res., 37, 96-106 https://doi.org/10.1016/j.cemconres.2006.09.003
- Warren T.L., Fossum A.F. and Frew D.J. (2004), "Penetration into low-strength (23 MPa) concrete: Target characterization and simulations", Int. J. Impact Eng., 30, 477-503 https://doi.org/10.1016/S0734-743X(03)00092-7
- Weerheijm, J. and Van Doormaal, J.C.A.M. (2007), "Tensile failure of concrete at high loading rates: New test data on strength and fracture energy from instrumented spalling tests", Int. J. Impact Eng., 34, 609-626 https://doi.org/10.1016/j.ijimpeng.2006.01.005
- Williams M.S. (1994), "Modeling of local impact effects on plain and reinforced concrete", ACI Struct. J., 91(2),178-187
- Yan, H., Sun, W. and Chen, H. (1999), "The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete", Cement Concrete Res., 29, 423-426 https://doi.org/10.1016/S0008-8846(98)00235-X
- Yankelevsky, D.Z. (1997), "Local response of concrete slabs to low velocity missile impact", Int. J. Impact Eng.,19(4), 331-343 https://doi.org/10.1016/S0734-743X(96)00041-3
- Zhang, M.H., Shim, V.P.W., Lu, G. and Chew, C.W. (2005), "Resistance of high-strength concrete to projectile impact", Int. J. Impact Eng., 31, 825-841 https://doi.org/10.1016/j.ijimpeng.2004.04.009
- Zhang, M., Wu, H.J. and Li, Q.M. (2009), "Further investigation on the dynamic compressive strength enhancement of concrete like materials based on split Hopkinson pressure bar tests Part I: Experiments", Int. J. Impact Eng., (in press), https://doi.org/10.1016/j.ijimpeng.2009.04.010
- Zineddin, M. and Krauthammer, T. (2007), "Dynamic response and behavior of reinforced concrete slabs under impact loading", Int. J. Impact Eng., 34(9), 1517-1534 https://doi.org/10.1016/j.ijimpeng.2006.10.012
피인용 문헌
- Resistance of double-layer reinforced HPC barriers to projectile impact vol.67, 2014, https://doi.org/10.1016/j.ijimpeng.2014.01.001
- Assessment of residual deformation of rear steel plate in RC barriers subjected to impact of non-deforming projectiles vol.77, 2015, https://doi.org/10.1016/j.ijimpeng.2014.11.005
- Polypropylene fiber reinforced concrete plates under fluid impact. Part I: experiments vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.211
- Assessment of the perforation limit of a composite RC barrier with a rear steel liner to impact of a non-deforming projectile vol.64, 2014, https://doi.org/10.1016/j.ijimpeng.2013.10.002
- Resistance of slim UHPFRC targets to projectile impact using in-service bullets vol.76, 2015, https://doi.org/10.1016/j.ijimpeng.2014.10.002
- The use of RKPM meshfree methods to compute responses to projectile impacts and blasts nearby charges vol.7, pp.2, 2009, https://doi.org/10.12989/cac.2010.7.2.119
- Debonding failure analysis of FRP-retrofitted concrete panel under blast loading vol.38, pp.4, 2009, https://doi.org/10.12989/sem.2011.38.4.479
- High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part I: experimental investigations vol.40, pp.5, 2009, https://doi.org/10.12989/sem.2011.40.5.595
- Damage potential: A dimensionless parameter to characterize soft aircraft impact into robust targets vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.031