Acknowledgement
Supported by : Akdeniz University
References
- Buchanan, G.R. (2005), "Vibration of circular membranes with linearly varying density along a diameter", J.Sound Vib., 280, 407-414 https://doi.org/10.1016/j.jsv.2004.01.043
- Buchanan, G.R. and Peddieson, Jr. J. (1999), "Vibration of circular and annular membranes with variable density", J. Sound Vib., 226(2), 379-382 https://doi.org/10.1006/jsvi.1999.2177
- Buchanan, G.R. and Peddieson, Jr. J. (2005), "A finite element in elliptic coordinates with application of membrane vibration", Thin Wall. Struct., 43, 1444-1454 https://doi.org/10.1016/j.tws.2005.04.001
- Casperson, L.W. and Nicolet, M.A. (1968), "Vibrations of a circular membrane", Am. J. Phys., 36(8), 669-671 https://doi.org/10.1119/1.1975085
- Civalek, Ö. (2007), "Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method", Int. J. Mech. Sci., 49, 752-765 https://doi.org/10.1016/j.ijmecsci.2006.10.002
- Civalek, Ö. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Press. Vess. Piping, 83, 1-12 https://doi.org/10.1016/j.ijpvp.2005.10.005
- Civalek, Ö. (2007), "A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution", Thin Wall. Struct., 45, 692-698 https://doi.org/10.1016/j.tws.2007.05.004
- Civalek, Ö. (2007), "Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach", Finite Elem. Anal. Des., 43, 1013-1022 https://doi.org/10.1016/j.finel.2007.06.014
- Civalek, Ö. (2007), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Model., 31, 606-624 https://doi.org/10.1016/j.apm.2005.11.023
- Civalek, Ö. (2007), "Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach", J. Comput. Appl. Math., 205, 251-271 https://doi.org/10.1016/j.cam.2006.05.001
- Gutierrez, R.H., Laura, P.A.A., Bambill, D.V. and Jederlinic, V.A.(1998), "Axisymmetric vibrations of solid circular and annular membranes with continuously varying density", J. Sound Vib., 212(4), 611-622 https://doi.org/10.1006/jsvi.1997.1418
- Han, J.B. and Liew, K.M. (1997), "Analysis of moderately thick circular plates using differential quadrature method", J. Eng. Mech., 123(2), 1247-1252 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1247)
- Hang, L.T.T., Wang, C.M. and Wu, T.Y. (2005), "Exact vibration results for stepped circular plates with free edges", Int. J. Mech. Sci., 47, 1224-1248 https://doi.org/10.1016/j.ijmecsci.2005.04.002
- Ho, S.H. and Chen, C.K. (2000), "Free vibration analysis of non-homogeneous rectangular membranes using a hybrid methods", J. Sound Vib., 233(3), 547-555 https://doi.org/10.1006/jsvi.1999.2808
- Houmat, A. (2001), "A sector Fourier p-element for free vibration analysis of sectorial membranes", Comput. Struct., 79, 1147-1152 https://doi.org/10.1016/S0045-7949(01)00013-X
- Houmat, A. (2006), "Free vibration analysis of arbitrarily shaped membranes using the trigonometric p-version of the finite element method", Thin Wall. Struct., 44, 943-951 https://doi.org/10.1016/j.tws.2006.08.022
- Jabareen, M. and Eisenberger, M. (2001), "Free vibrations of non-homogeneous circular and annular membranes", J. Sound Vib., 240(3), 409-429 https://doi.org/10.1006/jsvi.2000.3249
- Kang, S.W. and Lee, J.M. (2000), "Application of free vibration analysis of membranes using non-dimensional dynamic influence function", J. Sound Vib., 234, 455-470 https://doi.org/10.1006/jsvi.1999.2872
- Kang, S.W., Lee, J.M. and Kang, Y.J. (1999), "Vibration analysis of arbitrarily shaped membranes using nondimensional dynamic influence function", J. Sound Vib., 221, 117-132 https://doi.org/10.1006/jsvi.1998.2009
- Laura, P.A.A., Bambill, D.V. and Gutierrez, R.H. (1997), A note on transverse vibrations of circular, annular, composite membranes”, J. Sound Vib., 205(5), 692-697 https://doi.org/10.1006/jsvi.1996.0839
- Laura, P.A.A., Rossi, R.E. and Gutierrez, R.H. (1997), "The fundamental frequency of non-homogeneous rectangular membranes", J. Sound Vib., 204(2), 373-376 https://doi.org/10.1006/jsvi.1996.0931
- Leung, A.Y.T., Zhu, B., Zheng J. and Yang, H. (2003), "A trapezoidal Fourier p-element for membrane vibrations", Thin Wall. Struct., 41, 479-491 https://doi.org/10.1016/S0263-8231(02)00117-9
- Liew, K.M. and Liu, F.-L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356 https://doi.org/10.1006/jsvi.1999.2623
- Liew, K.M. and Yang, B. (2000), "Elasticity solution for free vibrations of annular plates from three-dimensional analysis", Int. J. Solids Struct., 37, 7689-7702 https://doi.org/10.1016/S0020-7683(99)00306-6
- Liew, K.M., Han, J.-B. and Xiao, Z.M. (1997), "Vibration analysis of circular Mindlin plates using the differential quadrature method", J. Sound Vib., 205(5), 617-630 https://doi.org/10.1006/jsvi.1997.1035
- Lim, C.W., Li, Z.R. and Wei, G.W. (2005), "DSC-Ritz method for high-mode frequency analysis of thick shallow shells", Int. J. Numer. Meth. Eng., 62, 205-232 https://doi.org/10.1002/nme.1179
- Lim, C.W., Li, Z.R., Xiang, Y., Wei, G.W. and Wang, C.M. (2005), "On the missing modes when using the exact frequency relationship between Kirchhoff and Mindlin plates", Adv. Vib. Eng., 4, 221-248
- Liu, F.-L. and Liew, K.M. (1999), "Free vibration analysis of Mindlin sector plates: Numerical solutions by differential quadrature method", Comput. Meth. Appl. Mech. Eng., 177, 77-92 https://doi.org/10.1016/S0045-7825(98)00376-4
- Masad, J.A. (1996), "Free vibrations of a non-homogeneous rectangular membrane", J. Sound Vib., 195, 674-678 https://doi.org/10.1006/jsvi.1996.0454
- Mei, C. (1969), "Free vibrations of circular membranes under arbitrary tension by the finite element method", J.Acoust. Soc. Am., 46(3), 693-700 https://doi.org/10.1121/1.1911750
- Oden, J.T. and Sato, T. (1697), "Finite strains and displacements of elastic membranes by the finite element method", Int. J. Solids Struct., 3, 471-488 https://doi.org/10.1016/0020-7683(67)90002-9
- Pronsato, M.E., Laura, P.A.A. and Juan, A. (1999), "Transverse vibrations of a rectangular membrane with discontinuously varying density", J. Sound Vib., 222(2), 341-344 https://doi.org/10.1006/jsvi.1998.2021
- Shu, C. (1996), "Free vibration analysis of composite laminated conical shells by generalized differential quadrature", J. Sound Vib., 194, 587-604 https://doi.org/10.1006/jsvi.1996.0379
- Shu, C. (1999), "Application of differential quadrature method to simulate natural convection in a concentricannulus", Int. J. Numer. Meth. Fluids, 30, 977-933 https://doi.org/10.1002/(SICI)1097-0363(19990830)30:8<977::AID-FLD873>3.0.CO;2-J
- Shu, C. and Du, H. (1997), "A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates", Int. J. Solids Struct., 34, 837-846 https://doi.org/10.1016/S0020-7683(96)00056-X
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two-dimensional incompressible navier-stokes equations", Int. J. Numer. Meth. Fluids, 15, 791-798 https://doi.org/10.1002/fld.1650150704
- Shu, C. and Xue, H. (1997), "Explicit computations of weighting coefficients in the harmonic differential quadrature", J. Sound Vib., 204(3), 549-555 https://doi.org/10.1006/jsvi.1996.0894
- Shu, C. and Xue, H. (1998), "Comparison of two approaches for implementing stream function boundary conditions in DQ simulation of natural convection in a square cavity", Int. J. Heat Fluid Flow, 19, 59-68 https://doi.org/10.1016/S0142-727X(97)10010-8
- Shu, C., Chen, W. and Du, H. (2000), "Free vibration analysis of curvilinear quadrilateral plates by the differential quadrature method", J. Comp. Phy., 163, 452-466 https://doi.org/10.1006/jcph.2000.6576
- Wang, C.M. and Lee, K.H. (1996), "Deflection and stress-resultants of axisymmetric Mindlin plates in terms of corresponding Kirchhoff solutions", Int. J. Mech. Sci., 38(11), 1179-1185 https://doi.org/10.1016/0020-7403(96)00019-7
- Wang, C.M., Xiang, Y., Watanabe, E. and Usunomiya, T. (2004), "Mode shapes and stress-resultants of circular Mindlin plates with free edges", J. Sound Vib., 276(3-5), 511-525 https://doi.org/10.1016/j.jsv.2003.08.010
- Wang, X. and Wang, Y. (2004), "Re-analysis of free vibration of annular plates by the new version of differential quadrature method", J. Sound Vib., 278(3), 685-689 https://doi.org/10.1016/j.jsv.2003.12.008
- Wei, G.W. (1999), "Discrete singular convolution for the solution of the Fokker-Planck equations", J. Chem. Phys., 110, 8930-8942 https://doi.org/10.1063/1.478812
- Wei, G.W. (2001), "A new algorithm for solving some mechanical problems", Comput. Meth. Appl. Mech. Eng.,190, 2017-2030 https://doi.org/10.1016/S0045-7825(00)00219-X
- Wei, G.W. (2001), "Discrete singular convolution for beam analysis", Eng. Struct., 23, 1045-1053 https://doi.org/10.1016/S0141-0296(01)00016-5
- Wei, G.W. (2001), "Vibration analysis by discrete singular convolution", J. Sound Vib. 244, 535-553 https://doi.org/10.1006/jsvi.2000.3507
- Wei, G.W., Zhao Y.B. and Xiang, Y. (2002), "A novel approach for the analysis of high-frequency vibrations", J. Sound Vib., 257(2), 207-246 https://doi.org/10.1006/jsvi.2002.5055
- Wei, G.W., Zhao Y.B. and Xiang, Y. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm", Int. J. Numer. Meth. Eng., 55, 913-946 https://doi.org/10.1002/nme.526
- Willatzen, M. (2002), "Exact power series solutions for axisymmetric vibrations of circular and annular membranes with continuously varying density in the general case", J. Sound Vib., 258(5), 981-986 https://doi.org/10.1006/jsvi.2002.5155
- Wu, W.X., Shu, C. and Wang, C.M. (2007), "Vibration analysis of arbitrarily shaped membranes using local radial basis function-based differential quadrature method", J. Sound Vib., 306, 252-270 https://doi.org/10.1016/j.jsv.2007.05.015
- Xiang, Y. (2002), "Exact vibration solutions for circular Mindlin plates with multiple concentric ring supports", Int. J. Solids Struct., 39, 6081-6102 https://doi.org/10.1016/S0020-7683(02)00494-8
- Xiang, Y. (2003), "Vibration of circular Mindlin plates with concentric elastic ring supports", Int. J. Mech. Sci., 45(3), 497-517 https://doi.org/10.1016/S0020-7403(03)00059-6
- Xiang, Y. (2003), "Vibration of circular Mindlin plates with concentric elastic ring supports", Int. J. Mech. Sci.,45, 497-517 https://doi.org/10.1016/S0020-7403(03)00059-6
- Xiang, Y. and Zhang, L. (2005), "Free vibration analysis of stepped circular Mindlin plates", J. Sound Vib., 280,633-655 https://doi.org/10.1016/j.jsv.2003.12.017
- Xiang, Y., Liew, K.M. and Kitipornchai, S. (1993), "Transverse vibration of thick annular sector plates", J. Eng.Mech., 119, 1579-1597 https://doi.org/10.1061/(ASCE)0733-9399(1993)119:8(1579)
- Xiang, Y., Zhao, Y.B. and Wei, G.W. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: Applications", Int. J. Numer. Meth. Eng., 55, 947-971 https://doi.org/10.1002/nme.527
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), “Discrete singular convolution for the prediction of high frequency vibration of plates”, Int. J. Solids Struct., 39, 65-88 https://doi.org/10.1016/S0020-7683(01)00183-4
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), "Plate vibration under irregular internal supports", Int. J. SolidsStruct., 39, 1361-1383 https://doi.org/10.1016/S0020-7683(01)00241-4
Cited by
- Free vibration analysis of composite, circular annular membranes using wave propagation approach vol.39, pp.16, 2015, https://doi.org/10.1016/j.apm.2015.03.057
- Generalized Differential Quadrature Finite Element Method for vibration analysis of arbitrarily shaped membranes vol.79, 2014, https://doi.org/10.1016/j.ijmecsci.2013.12.008
- Strong Formulation IsoGeometric Analysis for the vibration of thin membranes of general shape vol.120, 2017, https://doi.org/10.1016/j.ijmecsci.2016.10.033
- Power series solution of circular membrane under uniformly distributed loads: investigation into Hencky transformation vol.45, pp.5, 2009, https://doi.org/10.12989/sem.2013.45.5.631
- Closed-form solution of axisymmetric deformation of prestressed Föppl-Hencky membrane under constrained deflecting vol.69, pp.6, 2009, https://doi.org/10.12989/sem.2019.69.6.693
- A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2009, https://doi.org/10.1007/s11831-019-09365-5