References
- Akbarov, A. (2005), 'The estimation of the time-dependent deformations of concrete', (in Turkish). Ph.D. Thesis, Istanbul Tech Univ, Istanbul
- Achenbach, J.D. (1973), Wave Propagation in Elastic Solids, North-Holland, Amsterdam
- Achenbach, J.D. (2003), Reciprocity in Elastodynamicsc, Cambridge Univ Press, Cambridge
- Banerjee, P.K. and Butterfield, R. (1981), Boundary Element Methods in Engineering Science, Mc. Graw-Hill, London
- Carrer, J.A.M. and Mansur, W.J. (2006), 'Solution of the two-dimensional scalar wave equation by the timedomain boundary element method: Lagrange truncation strategy in time integration', Struct. Eng. Mech., 23(3), 263-278
- Christensen, R.M. (1971), Theory of Viscoelasticity an Introduction, Academic Press, New York
- Gurtin, M.E. and Sternberg, E. (1962), 'On the linear theory of viscoelasticity', Arch. Ration. Mech. An., 11(4), 291-356 https://doi.org/10.1007/BF00253942
- Kadioglu, N. and Ataoglu, S. (2005), 'Use of the reciprocity theorem for axially symmetric transient problems', Arch. Appl. Mech., 74(5-6), 325-337 https://doi.org/10.1007/BF02637034
- Kadioglu, N. and Ataoglu, S. (2006), 'A sudden explosion in a cylindrical cavity', In: 2nd WSEAS International Conference on Applied and Theoretical Mechanics, 183-196, Venice
- Kadioglu, N. and Ataoglu, S. (2006), 'More about axial symmetric problems of elastodynamics', WSEAS T. Appl. Theor. Mech., 1(1), 70-76
- Kadioglu, N. and Ataoglu, S. (2007), 'A BEM implementation for 2D problems in plane orthotropic elasticity', Struct. Eng. Mech., 26(5), 591-615
- Kadioglu, N., Ataoglu, S. and Ozturk, C. (2007), 'Viscoelastic state for the solutions of spherically symmetric viscoelasticity problems', J. Eng. Mech., ASCE, 133(6), 723-727 https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(723)
- Lahellec, N. and Suquet, P. (2007), 'Effective behavior of linear viscoelastic composites: A time integration approach', Int. J. Solids Struct., 44(2), 507-529 https://doi.org/10.1016/j.ijsolstr.2006.04.038
- Lee, S.S., Sohn, Y.S. and Park, S.H. (1994), 'On fundamental solutions in time-domain boundary element analysis of linear viscoelasticity', Eng. Anal. Bound. Elem., 13(3), 211-217 https://doi.org/10.1016/0955-7997(94)90046-9
- Malvern, L.E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, New Jersey
- Mesquita, A.D. and Coda, H.B. (2001), 'An alternative time integration procedure for Boltzmann viscoelasticity: A BEM approach', Comput. Struct., 79(16), 1487-1496 https://doi.org/10.1016/S0045-7949(01)00042-6
- Mesquita, A.D. and Coda, H.B. (2002), 'Boundary integral equation method for general viscoelastic analysis', Int. J. Solids Struct., 39(9), 2643-2664 https://doi.org/10.1016/S0020-7683(02)00148-8
- Mesquita, A.D. and Coda, H.B. (2007), 'Boundary element methodology for viscoelastic analysis: Part I with cells', Appl. Math. Model., 31(6), 1149-1170 https://doi.org/10.1016/j.apm.2006.04.006
- Mesquita, A.D. and Coda, H.B. (2007), 'A boundary element methodology for viscoelastic analysis: Part II without cells', Appl. Math. Model., 31(6), 1171-1185 https://doi.org/10.1016/j.apm.2006.04.003
- Reddy, D.V. and Ataoglu, S. (2004), 'Analysis of jointed HDPE pipe', J. Adv. Mater., 36(3), 43-50
- Sim, W.J. and Kwak, B.M. (1988), 'Linear viscoelastic analysis in time domain by boundary element method', Comput. Struct., 29(4), 531-539 https://doi.org/10.1016/0045-7949(88)90363-X
- Sokolnikoff, I.S. (1956), Mathematical Theory of Elasticity, McGraw-Hill, New York
- Syngellakis, S. (2003), 'Boundary element methods for polymer analysis', Eng. Anal. Bound. Elem., 27(2), 125-135 https://doi.org/10.1016/S0955-7997(02)00090-5
- Syngellakis, S. and Wu J. (2004), 'Evaluation of various schemes for quasi-static boundary element analysis of polymers', Eng. Anal. Bound. Elem., 28(7), 733-745 https://doi.org/10.1016/j.enganabound.2004.01.008
- Wang, J. and Birgisson, B. (2007), 'A time domain boundary element method for modeling the quasistatic viscoelastic behavior of asphalt pavements', Eng. Anal. Bound. Elem., 31(3), 226-240 https://doi.org/10.1016/j.enganabound.2006.09.007
Cited by
- Calculation by iterative method of linear viscoelastic plate under biaxial tension vol.177, 2017, https://doi.org/10.1088/1757-899X/177/1/012078
- Modification of the iterative method for solving linear viscoelasticity boundary value problems and its implementation by the finite element method vol.229, pp.6, 2018, https://doi.org/10.1007/s00707-018-2129-z
- Variable separation method for solving boundary value problems of isotropic linearly viscoelastic bodies vol.231, pp.9, 2009, https://doi.org/10.1007/s00707-020-02698-4