References
- ANSYS Academic Research, v. 11.0
- Attaway, S.W., Heinstein, M.W. and Swegle, J.W. (1994), 'Coupling of smooth particle hydrodynamics with the finite element method', Nucl. Eng. Des., 150, 199-205 https://doi.org/10.1016/0029-5493(94)90136-8
- Autodyn (2001), Theory Manual, revision 4.2, Century Dynamics Inc., San Ramon, California
- Brackbill, J.U. and Ruppel, H.M. (1986), 'FLIP: A method for adoptively zoned, particle-in-cell calculations in two dimensions', J. Comput. Phys., 65, 314-343 https://doi.org/10.1016/0021-9991(86)90211-1
- Cusatis, G., Bažant Z.P. and Cedolin, L. (2006), Confinement-shear lattice CSL model for fracture propagation in concrete, Comput. Meth. Appl. Mech. Eng., 195, 7154-7171 https://doi.org/10.1016/j.cma.2005.04.019
- Cusatis, G. and Pelessone, D. (2006), 'Mesolevel simulation of reinforced concrete structures under impact loadings', Proc. EURO-C 2006 Conf. on Computational Modelling of Concrete Structures, 27-30 March 2006, Mayrhofen, Tyrol, Austria, 63-70
- Eckardt, S., Hafner, S. and Konke, C. (2004), 'Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale', in: Proc. of ECCOMAS 2004, Jyvaskyla
- Fahrenthold, E.P. and Koo, J.C. (2000), 'Hybrid particle-element bond graphs for impact dynamics simulation', J. Dyn. Syst., Measurement, Control, 122, 306-313 https://doi.org/10.1115/1.482456
- Johnson, G.R. (1994), 'Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations', Nucl. Eng. Des., 150, 265-274 https://doi.org/10.1016/0029-5493(94)90143-0
- Johnson, G.R., Stryk, R.A. and Beissel, S.R. (1996), 'SPH for high velocity impact computations', Comput. Meth. Appl. Mech. Eng., 139(1-4), 347-373 https://doi.org/10.1016/S0045-7825(96)01089-4
- Johnson, G.R. and Holmquist, T.J. (1994), 'An improved constitutive model for brittle materials', High-pressure Science and Technology. AIP Press: New York
- Johnson, G.R. and Stryk, R.A. (2003), 'Conversion of 3D distorted elements into meshless particles during dynamic deformation', Int. J. Impact Eng., 28, 947-966 https://doi.org/10.1016/S0734-743X(03)00012-5
- Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999), 'Mesoscopic study of concrete II: nonlinear finite element analysis', Comput. Struct., 70, 545-556 https://doi.org/10.1016/S0045-7949(98)00178-3
- Li, S. and Liu, W.K. (2004), Meshfree Particle Methods, Berlin: Springer Verlag
- LS-DYNA (2007), Keyword User’s Manual, Version 971. Livermore Software Technology Corporation
- Lu, Y., Tu, Z. and Dong, A. (2007), 'Modeling of concrete for localized impact / explosion effects', Report No. 2 for NTU-DSTA Joint R&D Project on Integrated Explosion Modelling, NTU, Feb. 2007, Singapore
- Lu, Y. and Tu, Z. (2008), 'Numerical simulation of concrete fragmentation with a meso-scale approach', Proc., ASEM'08, 26-28 May, Jeju, Korea
- Lu, Y. and Wang, Z.Q. (2006), 'Characterization of structural effects from above-ground explosion using coupled numerical simulation', Comput. Struct., 84(28), 1729-1742 https://doi.org/10.1016/j.compstruc.2006.05.002
- Luccioni, B.M., Ambrosini, R.D. and Danesi, R.F. (2004), 'Analysis of building collapse under blast loads', Eng. Struct., 26, 63-71 https://doi.org/10.1016/j.engstruct.2003.08.011
- Malvar, L.J., Crawford, J.E. and Morrill, K.B. (2000), 'K&C concrete material model Release III - Automated generation of material model input', K&C Technical Report TR-99-24-B1
- Malvar, L.J., Crawford, J.E. and Wesevich, J.W. (1997), A plasticity concrete material model for Dyna3D', Int. J. Impact Eng., 19(9-10), 847-873 https://doi.org/10.1016/S0734-743X(97)00023-7
- Owen, D.R.J., Feng, Y.T., de Souza Neto, E.A., Cottrell, M.G.,Wang, F., Andrade Pires, F.M. and Yu, J. (2004), 'The modelling of multi-fracturing solids and particulate media', Int. J. Numer. Meth. Eng., 60(1), 317-339 https://doi.org/10.1002/nme.964
- Rabczuk, T. and Eibl, J. (2006), 'Modelling dynamic failure of concrete with meshfree methods', Int. J. Impact Eng., 32(11), 1878-1897 https://doi.org/10.1016/j.ijimpeng.2005.02.008
- Riedel, W., Thoma, K. and Hiermaier, S. (1999), 'Numerical analysis using a ew macroscopic concrete model for hydrocodes', Proc. 9th Int. Symposium on Interaction of the Effects of Munitions with Structures, 315-322
- Sadouki, H. and Wittmann, F.H. (1998), 'On the analysis of the failure process in composite materials by numerical simulation', Mater. Sci. Eng., A104, 9-20 https://doi.org/10.1016/0025-5416(88)90401-6
- Silling, S.A. and Askari, E. (2005), 'A meshfree method based on the peridynamic model of solid mechanics', Comput. Struct., 83, 1526-1535 https://doi.org/10.1016/j.compstruc.2004.11.026
- Sulsky, D. and Schreyer, H.L. (1996), 'Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems', Comput. Meth. Appl. Mech. Eng., 139, 409-429 https://doi.org/10.1016/S0045-7825(96)01091-2
- Sulsky, D., Zhou, S.J. and Schreyer, H.L. (1995), 'Application of a particle-in-cell method to solid mechanics', Comput. Phys. Commun., 87, 136-252 https://doi.org/10.1016/0010-4655(94)00170-7
- Tu, Z. and Lu, Y. (2009), 'Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations', Int. J. Impact Eng., 36, 132-146 https://doi.org/10.1016/j.ijimpeng.2007.12.010
- Unosson, M. and Nilsson, L. (2006), 'Projectile penetration and perforation of high strength concrete: experimental results and macroscopic modelling', Int. J. Impact Eng., 32, 1068-1085 https://doi.org/10.1016/j.ijimpeng.2004.11.003
- Wang, Z., Lu, Y., Hao, H. and Chong, K. (2004), 'A full coupled numerical analysis approach for buried structures subjected to subsurface blast', Comput. Struct., 83(4-5), 339-356 https://doi.org/10.1016/j.compstruc.2004.08.014
- Xu, K. and Lu, Y. (2006), 'Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading', Comput. Struct., 84(5-6), 431-438 https://doi.org/10.1016/j.compstruc.2005.09.029
Cited by
- Deformability design of high-performance concrete beams vol.22, pp.9, 2013, https://doi.org/10.1002/tal.728
- Dynamic response of a reinforced concrete slab subjected to air blast load vol.56, pp.3, 2011, https://doi.org/10.1016/j.tafmec.2011.11.002
- MESHLESS FINITE VOLUME METHOD WITH SMOOTHING vol.11, pp.06, 2014, https://doi.org/10.1142/S0219876213500874
- Review of the current practices in blast-resistant analysis and design of concrete structures vol.19, pp.8, 2016, https://doi.org/10.1177/1369433216656430
- Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion vol.116, 2017, https://doi.org/10.1016/j.matdes.2016.11.098
- IMPACT SIMULATIONS USING SMOOTHED FINITE ELEMENT METHOD vol.10, pp.04, 2013, https://doi.org/10.1142/S0219876213500126
- Modeling concrete like materials under sever dynamic pressures vol.76, 2015, https://doi.org/10.1016/j.ijimpeng.2014.09.009
- Numerical Simulation of Shock Response and Dynamic Fracture of a Concrete Dam Subjected to Impact Load vol.20, pp.1, 2016, https://doi.org/10.15446/esrj.v20n1.54133
- Normalised rotation capacity for deformability evaluation of high-performance concrete beams vol.1, pp.3, 2009, https://doi.org/10.12989/eas.2010.1.3.269
- Minimum deformability design of high-strength concrete beams in non-seismic regions vol.8, pp.4, 2009, https://doi.org/10.12989/cac.2011.8.4.445
- Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation vol.37, pp.2, 2009, https://doi.org/10.12989/sem.2011.37.2.197
- Debonding failure analysis of FRP-retrofitted concrete panel under blast loading vol.38, pp.4, 2009, https://doi.org/10.12989/sem.2011.38.4.479
- Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study vol.77, pp.3, 2009, https://doi.org/10.12989/sem.2021.77.3.305
- Mesoscopic modelling of concrete material under static and dynamic loadings: A review vol.278, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.122419