DOI QR코드

DOI QR Code

Modelling of concrete structures subjected to shock and blast loading: An overview and some recent studies

  • Lu, Yong (Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh)
  • Received : 2008.12.15
  • Accepted : 2009.03.18
  • Published : 2009.05.30

Abstract

The response of concrete structures subjected to shock and blast load involves a rapid transient phase, during which material breach may take place. Such an effect could play a crucial role in determining the residual state of the structure and the possible dispersion of the fragments. Modelling of the transient phase response poses various challenges due to the complexities arising from the dynamic behaviour of the materials and the numerical difficulties associated with the evolving material discontinuity and large deformations. Typical modelling approaches include the traditional finite element method in conjunction with an element removal scheme, various meshfree methods such as the SPH, and the mesoscale model. This paper is intended to provide an overview of several alternative approaches and discuss their respective applicability. Representative concrete material models for high pressure and high rate applications are also commented. Several recent application studies are introduced to illustrate the pros and cons of different modelling options.

Keywords

References

  1. ANSYS Academic Research, v. 11.0
  2. Attaway, S.W., Heinstein, M.W. and Swegle, J.W. (1994), 'Coupling of smooth particle hydrodynamics with the finite element method', Nucl. Eng. Des., 150, 199-205 https://doi.org/10.1016/0029-5493(94)90136-8
  3. Autodyn (2001), Theory Manual, revision 4.2, Century Dynamics Inc., San Ramon, California
  4. Brackbill, J.U. and Ruppel, H.M. (1986), 'FLIP: A method for adoptively zoned, particle-in-cell calculations in two dimensions', J. Comput. Phys., 65, 314-343 https://doi.org/10.1016/0021-9991(86)90211-1
  5. Cusatis, G., Bažant Z.P. and Cedolin, L. (2006), Confinement-shear lattice CSL model for fracture propagation in concrete, Comput. Meth. Appl. Mech. Eng., 195, 7154-7171 https://doi.org/10.1016/j.cma.2005.04.019
  6. Cusatis, G. and Pelessone, D. (2006), 'Mesolevel simulation of reinforced concrete structures under impact loadings', Proc. EURO-C 2006 Conf. on Computational Modelling of Concrete Structures, 27-30 March 2006, Mayrhofen, Tyrol, Austria, 63-70
  7. Eckardt, S., Hafner, S. and Konke, C. (2004), 'Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale', in: Proc. of ECCOMAS 2004, Jyvaskyla
  8. Fahrenthold, E.P. and Koo, J.C. (2000), 'Hybrid particle-element bond graphs for impact dynamics simulation', J. Dyn. Syst., Measurement, Control, 122, 306-313 https://doi.org/10.1115/1.482456
  9. Johnson, G.R. (1994), 'Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations', Nucl. Eng. Des., 150, 265-274 https://doi.org/10.1016/0029-5493(94)90143-0
  10. Johnson, G.R., Stryk, R.A. and Beissel, S.R. (1996), 'SPH for high velocity impact computations', Comput. Meth. Appl. Mech. Eng., 139(1-4), 347-373 https://doi.org/10.1016/S0045-7825(96)01089-4
  11. Johnson, G.R. and Holmquist, T.J. (1994), 'An improved constitutive model for brittle materials', High-pressure Science and Technology. AIP Press: New York
  12. Johnson, G.R. and Stryk, R.A. (2003), 'Conversion of 3D distorted elements into meshless particles during dynamic deformation', Int. J. Impact Eng., 28, 947-966 https://doi.org/10.1016/S0734-743X(03)00012-5
  13. Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999), 'Mesoscopic study of concrete II: nonlinear finite element analysis', Comput. Struct., 70, 545-556 https://doi.org/10.1016/S0045-7949(98)00178-3
  14. Li, S. and Liu, W.K. (2004), Meshfree Particle Methods, Berlin: Springer Verlag
  15. LS-DYNA (2007), Keyword User’s Manual, Version 971. Livermore Software Technology Corporation
  16. Lu, Y., Tu, Z. and Dong, A. (2007), 'Modeling of concrete for localized impact / explosion effects', Report No. 2 for NTU-DSTA Joint R&D Project on Integrated Explosion Modelling, NTU, Feb. 2007, Singapore
  17. Lu, Y. and Tu, Z. (2008), 'Numerical simulation of concrete fragmentation with a meso-scale approach', Proc., ASEM'08, 26-28 May, Jeju, Korea
  18. Lu, Y. and Wang, Z.Q. (2006), 'Characterization of structural effects from above-ground explosion using coupled numerical simulation', Comput. Struct., 84(28), 1729-1742 https://doi.org/10.1016/j.compstruc.2006.05.002
  19. Luccioni, B.M., Ambrosini, R.D. and Danesi, R.F. (2004), 'Analysis of building collapse under blast loads', Eng. Struct., 26, 63-71 https://doi.org/10.1016/j.engstruct.2003.08.011
  20. Malvar, L.J., Crawford, J.E. and Morrill, K.B. (2000), 'K&C concrete material model Release III - Automated generation of material model input', K&C Technical Report TR-99-24-B1
  21. Malvar, L.J., Crawford, J.E. and Wesevich, J.W. (1997), A plasticity concrete material model for Dyna3D', Int. J. Impact Eng., 19(9-10), 847-873 https://doi.org/10.1016/S0734-743X(97)00023-7
  22. Owen, D.R.J., Feng, Y.T., de Souza Neto, E.A., Cottrell, M.G.,Wang, F., Andrade Pires, F.M. and Yu, J. (2004), 'The modelling of multi-fracturing solids and particulate media', Int. J. Numer. Meth. Eng., 60(1), 317-339 https://doi.org/10.1002/nme.964
  23. Rabczuk, T. and Eibl, J. (2006), 'Modelling dynamic failure of concrete with meshfree methods', Int. J. Impact Eng., 32(11), 1878-1897 https://doi.org/10.1016/j.ijimpeng.2005.02.008
  24. Riedel, W., Thoma, K. and Hiermaier, S. (1999), 'Numerical analysis using a ew macroscopic concrete model for hydrocodes', Proc. 9th Int. Symposium on Interaction of the Effects of Munitions with Structures, 315-322
  25. Sadouki, H. and Wittmann, F.H. (1998), 'On the analysis of the failure process in composite materials by numerical simulation', Mater. Sci. Eng., A104, 9-20 https://doi.org/10.1016/0025-5416(88)90401-6
  26. Silling, S.A. and Askari, E. (2005), 'A meshfree method based on the peridynamic model of solid mechanics', Comput. Struct., 83, 1526-1535 https://doi.org/10.1016/j.compstruc.2004.11.026
  27. Sulsky, D. and Schreyer, H.L. (1996), 'Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems', Comput. Meth. Appl. Mech. Eng., 139, 409-429 https://doi.org/10.1016/S0045-7825(96)01091-2
  28. Sulsky, D., Zhou, S.J. and Schreyer, H.L. (1995), 'Application of a particle-in-cell method to solid mechanics', Comput. Phys. Commun., 87, 136-252 https://doi.org/10.1016/0010-4655(94)00170-7
  29. Tu, Z. and Lu, Y. (2009), 'Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations', Int. J. Impact Eng., 36, 132-146 https://doi.org/10.1016/j.ijimpeng.2007.12.010
  30. Unosson, M. and Nilsson, L. (2006), 'Projectile penetration and perforation of high strength concrete: experimental results and macroscopic modelling', Int. J. Impact Eng., 32, 1068-1085 https://doi.org/10.1016/j.ijimpeng.2004.11.003
  31. Wang, Z., Lu, Y., Hao, H. and Chong, K. (2004), 'A full coupled numerical analysis approach for buried structures subjected to subsurface blast', Comput. Struct., 83(4-5), 339-356 https://doi.org/10.1016/j.compstruc.2004.08.014
  32. Xu, K. and Lu, Y. (2006), 'Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading', Comput. Struct., 84(5-6), 431-438 https://doi.org/10.1016/j.compstruc.2005.09.029

Cited by

  1. Deformability design of high-performance concrete beams vol.22, pp.9, 2013, https://doi.org/10.1002/tal.728
  2. Dynamic response of a reinforced concrete slab subjected to air blast load vol.56, pp.3, 2011, https://doi.org/10.1016/j.tafmec.2011.11.002
  3. MESHLESS FINITE VOLUME METHOD WITH SMOOTHING vol.11, pp.06, 2014, https://doi.org/10.1142/S0219876213500874
  4. Review of the current practices in blast-resistant analysis and design of concrete structures vol.19, pp.8, 2016, https://doi.org/10.1177/1369433216656430
  5. Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion vol.116, 2017, https://doi.org/10.1016/j.matdes.2016.11.098
  6. IMPACT SIMULATIONS USING SMOOTHED FINITE ELEMENT METHOD vol.10, pp.04, 2013, https://doi.org/10.1142/S0219876213500126
  7. Modeling concrete like materials under sever dynamic pressures vol.76, 2015, https://doi.org/10.1016/j.ijimpeng.2014.09.009
  8. Numerical Simulation of Shock Response and Dynamic Fracture of a Concrete Dam Subjected to Impact Load vol.20, pp.1, 2016, https://doi.org/10.15446/esrj.v20n1.54133
  9. Normalised rotation capacity for deformability evaluation of high-performance concrete beams vol.1, pp.3, 2009, https://doi.org/10.12989/eas.2010.1.3.269
  10. Minimum deformability design of high-strength concrete beams in non-seismic regions vol.8, pp.4, 2009, https://doi.org/10.12989/cac.2011.8.4.445
  11. Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation vol.37, pp.2, 2009, https://doi.org/10.12989/sem.2011.37.2.197
  12. Debonding failure analysis of FRP-retrofitted concrete panel under blast loading vol.38, pp.4, 2009, https://doi.org/10.12989/sem.2011.38.4.479
  13. Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study vol.77, pp.3, 2009, https://doi.org/10.12989/sem.2021.77.3.305
  14. Mesoscopic modelling of concrete material under static and dynamic loadings: A review vol.278, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.122419