DOI QR코드

DOI QR Code

Reinforced concrete wall as protection against accidental explosions in the petrochemical industry

  • Received : 2008.11.21
  • Accepted : 2009.02.20
  • Published : 2009.05.30

Abstract

In this paper the study of a reinforced concrete wall used as protection against accidental explosions in the petrochemical industry is presented. Many alternatives of accidental scenarios and sizes of the wall are analyzed and discussed. Two main types of events are considered, both related to vessel bursts: Pressure vessel bursts and BLEVE. The liberated energy from the explosion was calculated following procedures firmly established in the practice and the effects over the structures and the reinforced concrete wall were calculated by using a CFD tool. The results obtained show that the designed wall reduces the values of the peak overpressure and impulse and, as a result, the damage levels to be expected. It was also proved that a reinforced concrete wall can withstand the blast load for the considered events and levels of pressure and impulse, with minor damage and protect the buildings.

Keywords

References

  1. Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J. and Strehlow, R.A. (1983), Explosion Hazards and Evaluation. Amsterdam: Elsevier
  2. Birk, A.M., Davison, C. and Cunningham, M. (2007), 'Blast overpressures from medium scale BLEVE tests', J. Loss Prevent. Proc., 20, 194-206 https://doi.org/10.1016/j.jlp.2007.03.001
  3. Borvik, T., Hanssen, A.G., Langseth, M. and Olovsson, L. (2008), 'Response of structures to planar blast loads - A finite element engineering approach', Comput. Struct., In press https://doi.org/10.1016/j.compstruc.2009.02.005
  4. Brara, A., Camborde, F., Klepaczko, J.R. and Mariotti, C. (2001), 'Experimental and numerical study of concrete at high strain rates in tension', Mech. Mater., 33, 33-45 https://doi.org/10.1016/S0167-6636(00)00035-1
  5. Bubbico, R. and Marchini, M. (2008), 'Assessment of an explosive LPG release accident: A case study', J. Hazardous Mater., 155(3), 558-565 https://doi.org/10.1016/j.jhazmat.2007.11.097
  6. Buchan, P.A. and Chen, J.F. (2007), 'Blast resistance of FRP composites and polymer strengthened concrete and masonry structures – A state-of-the-art review', Composites: Part B, 38, 509-522 https://doi.org/10.1016/j.compositesb.2006.07.009
  7. Cadoni, E., Labibes, K., Berra, M., Giangrasso, M. and Albertini, C. (2000), 'High-strain-rate tensile behaviour of concrete', Mag. Concrete Res., 52(5), 365-370 https://doi.org/10.1680/macr.2000.52.5.365
  8. Dube, J.F. and Pijudier-Cabot, G. (1996), 'Rate-dependent damage model for concrete in dynamics', J. Eng. Mech., ASCE, 122(10), 939-947 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:10(939)
  9. Elliott, C.L., Mays, G.C. and Smith, P.D. (1992), 'The protection of buildings against terrorism and disorder', P. I. Civil Eng.- Str. B., 94, 287-297
  10. Gatuingt, F. and Pijaudier-Cabot, G. (2000), 'Computational modelling of concrete structures subjected to explosion and perforation', Proceeding of Eccomass 2000, Barcelona
  11. Gatuingt, F. and Pijaudier-Cabot, G. (2002), 'Coupled damage and plasticity modelling in transient dynamic analysis of concrete', Int. J. Numer. Anal. Meth. Geomech., 26, 1-24 https://doi.org/10.1002/nag.188
  12. Gebbeken, N. and Ruppert, M. (2000), 'A new material model for concrete in high-dynamic hydrocode simulations', Arch Appl. Mech., 70, 463-478 https://doi.org/10.1007/s004190000079
  13. Genova, B., Silvestrini, M. and Leon Trujillo, F.J. (2008), 'Evaluation of the blast-wave overpressure and fragments initial velocity for a BLEVE event via empirical correlations derived by a simplified model of released energy', J. Loss Prevent. Proc., 21, 110-117 https://doi.org/10.1016/j.jlp.2007.11.004
  14. Jacinto, A., Ambrosini, R.D. and Danesi, R.F. (2001), 'Experimental and computational analysis of plates under air blast loading', Int. J. Impact Eng., 25(10), 927-947 https://doi.org/10.1016/S0734-743X(01)00031-8
  15. Kinney, G.F. and Graham, K.J. (1985), Explosive Shocks in Air. 2nd ed. Berlin: Springer Verlag
  16. Le Nard, H. and Bailly, P. (2000), 'Dynamic behaviour of concrete: the structural effects on compressive strength increase', Mech. Cohes-Frict Mater., 5, 491-510 https://doi.org/10.1002/1099-1484(200008)5:6<491::AID-CFM106>3.0.CO;2-R
  17. Ledin, H.S. and Lea, C.J. (2002), A Review of the State-of-the-Art in Gas Explosion Modelling. Report HSL/2002/02. Health and Safety Laboratory
  18. Lok, T.S. and Xiao, J.R. (1999), 'Steel-fibre-reinforced concrete panels exposed to air blast loading', P. I. Civil Eng.- Str. B., 134(44), 319-331
  19. Lu, Y. and Xu, K. (2004), 'Modelling of dynamic behaviour of concrete materials under blast loading', Int. J. Solids Struct., 41, 131-143 https://doi.org/10.1016/j.ijsolstr.2003.09.019
  20. Lu, Y. and Wang, Z. (2006), 'Characterization of structural effects from above-ground explosion using coupled numerical simulation', Comput. Struct., 84, 1729-1742 https://doi.org/10.1016/j.compstruc.2006.05.002
  21. Lubliner, J. (1990), Plasticity Theory. USA: McMillan
  22. Luccioni, B.M., Ambrosini, D. and Danesi, R. (2004), 'Analysis of building collapse under blast loads', Eng. Struct., 26, 63-71 https://doi.org/10.1016/j.engstruct.2003.08.011
  23. Luccioni, B., Ambrosini, D. and Danesi, R. (2005), 'Predicting the location and size of an explosive device detonated in an urban environment using evidence from building damage', P. I. Civil Eng.- Str. B., 158, 1-12
  24. Luccioni, B., Ambrosini, D. and Danesi, R. (2006), 'Blast load assessment using hydrocodes', Eng. Struct., 28(12), 1736-1744 https://doi.org/10.1016/j.engstruct.2006.02.016
  25. Luccioni, B. and Luege, M. (2006), 'Concrete pavement slab under blast loads', Int. J. Impact Eng., 32(8), 1248-1266 https://doi.org/10.1016/j.ijimpeng.2004.09.005
  26. Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), 'A plasticity concrete material model for DYNA3D', Int. J. Impact Eng., 19(9-10), 847-873 https://doi.org/10.1016/S0734-743X(97)00023-7
  27. Mays, G.C., Hetherington, J.G. and Rose, T.A. (1999), 'Response to blast loading of concrete wall panels with openings', J. Struct. Eng., ASCE, 125(12), 1448-1450 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1448)
  28. Meel, A., O'Neill, L.M., Levin, J.H. , Seider, W.D., Oktem, U. and Keren, N. (2007), 'Operational risk assessment of chemical industries by exploiting accident databases', J. Loss Prevent. Proc., 20, 113-127 https://doi.org/10.1016/j.jlp.2006.10.003
  29. Millington G.S. (1994), 'Discussion of 'The protection of buildings against terrorism and disorder' by C. L. Elliott, G. C. Mays and P. D. Smith', P. I. Civil Eng.- Str. B., 104, 343-346
  30. Park, K., Mannan, M.S., Jo, Y., Kim, J., Keren, N. and Wang, Y.(2006), 'Incident analysis of Bucheon LPG filling station pool fire and BLEVE', J. Hazardous Mater., A137, 62-67 https://doi.org/10.1016/j.jhazmat.2006.01.070
  31. Perry, R.H. and Green, D. (1984), Perry’s Chemical Engineers’ Handbook. 6th New York, McGraw-Hill
  32. Planas-Cuchi, E., Salla, J.M. and Casal, J. (2004), 'Calculating overpressure from BLEVE explosions', J. Loss Prevent. Proc., 17, 431-436 https://doi.org/10.1016/j.jlp.2004.08.002
  33. Planas-Cuchi, E., Gasulla, N., Ventosa, A. and Casal, J. (2004b), 'Explosion of a road tanker containing liquified natural gas', J. Loss Prevent. Proc., 17, 315-321 https://doi.org/10.1016/j.jlp.2004.05.005
  34. Razus, D.M. and Krause, U. (2001), 'Comparison of empirical and semi-empirical calculation methods for venting of gas explosions', Fire Safety J., 36, 1-23 https://doi.org/10.1016/S0379-7112(00)00049-7
  35. Sercombe, J., Ulm, F. and Toutlemonde, J. (1998), 'Viscous hardening plasticity for concrete in high rate dynamics', J. Eng. Mech., ASCE, 124(9), 1050-1057 https://doi.org/10.1061/(ASCE)0733-9399(1998)124:9(1050)
  36. Smith, P.D. and Hetherington, J.G. (1994), Blast and ballistic loading of structures. Great Britain: Butterworth-Heinemann Ltd
  37. Stawczyk, J. (2003), 'Experimental evaluation of LPG tank explosion hazards', J. Hazardous Mater., B96, 189-200 https://doi.org/10.1016/S0304-3894(02)00198-X
  38. Tekalur, S.A., Shivakumar, K. and Shukla, A. (2008), 'Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads', Composites: Part B, 39, 57-65 https://doi.org/10.1016/j.compositesb.2007.02.020
  39. TNO CPR 14E (Yellow Book) (2005), Methods for the Calculation of physical Effects Due to the Release of Hazardous Materials (liquids and gases). Editors: C.J.H. van den Bosch, R.A.P.M. Weterings. Voorburg, Netherlands Committee for the Prevention of Disasters., 3rd ed., 2nd revised print
  40. U.S. Chemical Safety and Hazard Investigation Board (2007), Investigation Report. Refinery Explosion and Fire (15 Killed, 180 Injured). Report No. 2005-04-I-TX. March
  41. van den Berg A.C., van der Voort, M.M., Weerheijm, J. and Versloot, N.H.A. (2004), 'Expansion-controlled evaporation: A safe approach to BLEVE blast', J. Loss Prevent. Proc., 17, 397-405 https://doi.org/10.1016/j.jlp.2004.07.002
  42. Wu, C., Hao, H. and Lu, Y. (2005), 'Dynamic response and damage analysis of masonry structures and masonry infilled RC frames to blast ground motion', Eng. Struct., 27, 323-333 https://doi.org/10.1016/j.engstruct.2004.10.004
  43. Yi, P. (1991), Explosionseinwirkungen auf Stahlbetonplatten. Zur Erlangung des akademischen Grades eines Doktor-Ingenieurs der Fakultat fur Bauingenieur-und Vermessungswessen der Universitat Fridericiana zu Karlsruhe (TH)
  44. Zheng, S., Haussler-Combe, U. and Eibl, J. (1999) 'New approach to strain rate sensitivity of concrete in compression', J. Eng. Mech., ASCE, 125(12), 1403-1410 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:12(1403)

Cited by

  1. Performance of composite structural insulated panel with metal skin subjected to blast loading vol.84, 2015, https://doi.org/10.1016/j.matdes.2015.06.081
  2. Influence of wall flexibility on dynamic response of cantilever retaining walls vol.49, pp.1, 2014, https://doi.org/10.12989/sem.2014.49.1.001
  3. Alternatives to prevent the failure of RC members under close-in blast loadings vol.60, 2016, https://doi.org/10.1016/j.engfailanal.2015.11.038
  4. Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite vol.23, pp.3, 2009, https://doi.org/10.12989/gae.2020.23.3.245