참고문헌
- Biggs, J.M. (1964), Introduction to Structural Dynamics. Mcgraw-hill
- Doormaal, van J.C.A.M. and Weerheijm, J. (1996), 'Ultimate deformation capacity of reinforced concrete slab under blast load', in Structures under Shock and Impact
- Doormaal, J.C.A.M. van and Absil, L.H.J. (2003), 'Consequence assessment of large bomb explosions in urban areas', Proceedings of ESREL 2003, European Safety and Reliability Conference, Maastricht, The Netherlands
- Ellingwood, B.R. et al. (2006), 'Best practices for reducing the potential for progressive collapse in buildings', USA: National Institute of Standards and Technology
- Izzuddin, B.A. et al. (2008), 'Progressive collapse of multi-storey buildings due to sudden column loss -- Part I:Simplified assessment framework', Eng. Struct., 30, 1308-1318 https://doi.org/10.1016/j.engstruct.2007.07.011
- Hallquist, J.O. (2005), LS-DYNA Theory Manual. Livermore Software Technology Corporation
- Kaewkulchai, G. and Williamson, E.B. (2004), 'Beam element formulation and solution procedure for dynamic progressive collapse analysis', Comput. Struct., 82(7-8), 639-651 https://doi.org/10.1016/j.compstruc.2003.12.001
- Luccioni, B.M., Ambrosini, R.D. and Danesi, R.F. (2004), 'Analysis of building collapse under blast loads', Eng. Struct., 26(1), 63-71 https://doi.org/10.1016/j.engstruct.2003.08.011
- Malvar, L.J. et al. (1997), 'A plasticity concrete material model for DYNA3D', Int. J. Impact Eng., 19(9-10), 847-873 https://doi.org/10.1016/S0734-743X(97)00023-7
- Mediavilla, J. et al. (2007a), 'Dynamic response of reinforced concrete plates under a blast explosion', TNO-DV 2007 IN533
- Mediavilla, J. (2007b), 'Study on the K&C concrete material model for the prediction of failure of structural elements', TNO-DV 2007 IN534
- Mediavilla, J. and Weerheijm, J. (2007c), 'Inverse analysis for failure model parameter identification applied to blast loaded concrete structures', ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. M. Papadrakakis, D.C. Charmpis, N.D. Lagaros, Y. Tsompanakis (eds.). Rethymno, Crete, Greece
- Starossek, U. (2007), 'Typology of progressive collapse', Eng. Struct., 29(9), 2302-2307 https://doi.org/10.1016/j.engstruct.2006.11.025
- Smith, P.D. and Rose, T.A. (2002), 'Blast loading and building robustness', Progress in Struct. Eng. Mater., 4(2), 213-223 https://doi.org/10.1002/pse.95
- Steen, A. van der and Doormaal, J.C.A.M. van (2007), 'Failure and resistance of reinforced concrete plates under blast: Experimental part', TNO-DV 2007 IN532
- US Army Engineers Waterways Experiment Station (1991), ConWep Conventional Weapons Effects. USA
- Vegt, I., Breugel, K., van and Weerheijm, J. (2007), 'Failure mechanisms of concrete under impact loading', A. Carpinteri, P. Gambarova, G. Ferro and G. Plizzari (eds.), in: Proceedings of the 6th Int. Conference on Fracture Mechanics of Concrete and Concrete Structures, Catania, Italy, ISBN 13 - Vol-1: 978 0 415 44065 3 ; Taylor & Francis Group, 579-587
- Vegt, I., Pedersen, R.R., Weerheijm, J., Sluys, L.J. and Simone, A. (2008), 'Failure process in concrete under static and impact tensile loading: experiments and numerical modelling', Proceedings ConMod'08 Conference, Delft
- Vlassis, A.G. et al. (2008), 'Progressive collapse of multi-storey buildings due to sudden column loss--Part II: Application', Eng. Struct., 30, 1424-1438 https://doi.org/10.1016/j.engstruct.2007.08.011
- Weerheijm, J., Doormaal, J.C.A.M. van and Mediavilla, J. (2007a), 'Prediction of damage and residual strength of RC panels under explosive loading', Zingoni (ed.), in: Proceedings of the Third International Conference on Structural Engineering, Mechanics and Computation 'Recent Developments in Structural Engineering: Mechanics and Computation', 10-12 September, Cape Town, South Africa. ISBN 9789059660540, Millpress, short version 229-230, long version on cd-rom 616-621
- Weerheijm, J., Doormaal, J.C.A.M. v. and Mediavilla Varas, J. (2007b), 'Concrete structures under blast loading. Dynamic response, damage, and residual strength', In H.J. Pasman and I.A. Kirillov (Eds.), Resilience of cities to Terrorist and other Threats. Learning from 9/11 and Further Research Issues. Proceedings of the NATO Advanced Research Workshop on Urban Structures Resilience under Multi-Hazard Threats: Lessons of 9/11 and Research Issues for Future Work, Moscow, Russia, 16-18 July 2007 (pp. 217-238). Dordrecht: Springer
- Weerheijm, J. and Doormaal, J.C.A.M. (2007c), 'Tensile failure of concrete at high loading rates; new test data on strength and fracture energy from instrumented spalling tests', J. Impact Eng., 34, 609-626 https://doi.org/10.1016/j.ijimpeng.2006.01.005
피인용 문헌
- Experimental Tests on High-Strength Concrete Columns Subjected to Combined Medium Axial Load and Flexure vol.15, pp.8, 2012, https://doi.org/10.1260/1369-4332.15.8.1359
- Stochastic representation of blast load damage in a reinforced concrete building vol.34, pp.1, 2012, https://doi.org/10.1016/j.strusafe.2011.08.001
- Progressive collapse evaluation of externally mitigated reinforced concrete beams vol.40, 2014, https://doi.org/10.1016/j.engfailanal.2014.02.002
- Investigation of the influence of design and material parameters in the progressive collapse analysis of RC structures vol.33, pp.10, 2011, https://doi.org/10.1016/j.engstruct.2011.06.005
- A new method for progressive collapse analysis of RC frames vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.031
- Progressive collapse resistance of flat slabs: modeling post-punching behavior vol.12, pp.3, 2013, https://doi.org/10.12989/cac.2013.12.3.351
- Deformability design of high-performance concrete beams vol.22, pp.9, 2013, https://doi.org/10.1002/tal.728
- Improving design limits of strength and ductility of NSC beam by considering strain gradient effect vol.47, pp.2, 2013, https://doi.org/10.12989/sem.2013.47.2.185
- Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response vol.36, pp.4, 2010, https://doi.org/10.12989/sem.2010.36.4.421
- Numerical procedures for extreme impulsive loading on high strength concrete structures vol.7, pp.2, 2009, https://doi.org/10.12989/cac.2010.7.2.159
- Normalised rotation capacity for deformability evaluation of high-performance concrete beams vol.1, pp.3, 2009, https://doi.org/10.12989/eas.2010.1.3.269
- Minimum deformability design of high-strength concrete beams in non-seismic regions vol.8, pp.4, 2009, https://doi.org/10.12989/cac.2011.8.4.445
- Identification of progressive collapse pushover based on a kinetic energy criterion vol.39, pp.3, 2009, https://doi.org/10.12989/sem.2011.39.3.427
- Inelastic design of high-axially loaded concrete columns in moderate seismicity regions vol.39, pp.4, 2009, https://doi.org/10.12989/sem.2011.39.4.559
- Concurrent flexural strength and deformability design of high-performance concrete beams vol.40, pp.4, 2009, https://doi.org/10.12989/sem.2011.40.4.541
- Numerical analyses for the structural assessment of steel buildings under explosions vol.45, pp.6, 2009, https://doi.org/10.12989/sem.2013.45.6.803
- A Simplified Method for Assessing the Response of RC Frame Structures to Sudden Column Removal vol.10, pp.9, 2020, https://doi.org/10.3390/app10093081
- Assessment of Dynamic Response of 3D Ultra High Performance Concrete Frame Structure under High Explosion Using Johnson-Holmquist 2 Model vol.25, pp.3, 2009, https://doi.org/10.1007/s12205-020-1373-7
- Flow-based seismic resilience assessment of urban water transmission networks vol.79, pp.4, 2009, https://doi.org/10.12989/sem.2021.79.4.517
- An Integrated Framework to Streamline Resilience in the Context of Urban Climate Risk Assessment vol.9, pp.9, 2009, https://doi.org/10.1029/2020ef001508