References
- Bishop, Ch.M. (1995), Neural Networks for Pattern Recognition. Oxford: Clarendon Press
- Govindaraju, R.S. (2000), Artificial Neural Networks in Hydrology I: Preliminary Concepts. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. J. Hydrologic Eng., ASCE, 5(2), 115-123 https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115)
- Toth, E., Brath, A. and Montanari, A. (2000), "Comparison of short-term rainfall prediction models for real-time flood forecasting", J. Hydrology, 239(1-4), 132-147 https://doi.org/10.1016/S0022-1694(00)00344-9
- Belli, M.R., Conti, M., Crippa, P. and Turchetti, C. (1999), "Artificial neural networks as approximators of stochastic processes", Neural Networ., 12(4-5), 647-658 https://doi.org/10.1016/S0893-6080(99)00017-9
- Cai, G.Q. and Wu, C. (2004), "Modeling of bounded stochastic processes", Probabilist. Eng. Mech., 19(3), 197-203 https://doi.org/10.1016/j.probengmech.2004.02.002
- Cao, L.J. and Tay, F.E.H. (2003), "Support vector machine with adaptive parameters in financial time series forecasting", IEEE T. Neural Networ., 14(6), 1506-1518 https://doi.org/10.1109/TNN.2003.820556
- Cimino, G., Del Duce, G., Kadonaga, L.K., Rotundo, G., Sisani, A., Stabile, G., Tirozzi, B. and Whiticar, M. (1999), "Time series analysis of geological data", Chemical Geology, 161(1-3), 253-270 https://doi.org/10.1016/S0009-2541(99)00091-1
- Du, S., Ellingwood, B.R. and Cox, J.V. (2005), "Solution methods and initialization techniques in SFE analysis of structural stability", Probabilist. Eng. Mech., 20(2), 179-187 https://doi.org/10.1016/j.probengmech.2005.05.002
- Field, Jr. R.V. and Grigoriu, M. (2004), "On the accuracy of the polynomial chaos approximation", Probabilist. Eng. Mech., 19(1-2), 65-80 https://doi.org/10.1016/j.probengmech.2003.11.017
- Furundzic, D. (1998), "Application example of neural networks for time series analysis: Rainfall-runoff modeling", Signal Process., 64(3), 383-396 https://doi.org/10.1016/S0165-1684(97)00203-X
- Ghanem, R. and Spanos, P.D. (2003), Stochastic Finite Elements: A Spectral Approach. New York Berlin Heidelberg: Springer, 1991. Mineola, New York: Dover Publications, Revised Edition
- Giles, C.L., Lawrence, S. and Tsoi, A.C. (2001), "Noisy time series prediction using a recurrent neural network and grammatical inference", Mach. Learn., 44, 161-183 https://doi.org/10.1023/A:1010884214864
- Govindaraju, R.S. (2000), Artificial Neural Networks in Hydrology I: Hydrologic Applications. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. J. Hydrologic Eng., ASCE, 5(2), 124-137 https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
- Grigoriu, M., Ditlevsen, O. and Arwade, S.R. (2003), "A Monte Carlo simulation model for stationary non-Gaussian processes", Probabilist. Eng. Mech., 18(1), 87-95 https://doi.org/10.1016/S0266-8920(02)00052-8
- Haykin, S. (1999), Neural Networks: A Comprehensive Foundation. Upper Saddle River, NJ: Prentice Hall
- Hirasawa, K., Mabu, S. and Hu, J. (2006), "Propagation and control of stochastic signals through universal learning networks", Neural Networks, 19(4), 487-499 https://doi.org/10.1016/j.neunet.2005.10.005
- Iwan, W.D. and Jensen, H. (1993), "On the dynamic-response of continuous systems including model uncertainty", J. Appl. Mech., Trans., ASME, 60(2), 484-490 https://doi.org/10.1115/1.2900819
- Jiang, X. and Adeli, H. (2005), "Dynamic wavelet neural network model for traffic flow forecasting", J. Transp. Eng., 131(10), 771-779 https://doi.org/10.1061/(ASCE)0733-947X(2005)131:10(771)
- Lee, S.-C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857 https://doi.org/10.1016/S0141-0296(03)00004-X
- Li, H. and Kozma, R. (2003), A Dynamical Neural Network Method for Time Series Prediction Using the KIII Model. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2003. Portland, OR;2003: IEEE press, 347-352
- More, A. and Deo, M.C. (2003), "Forecasting wind with neural networks", Marine Structures, 16, 35-49 https://doi.org/10.1016/S0951-8339(02)00053-9
- Ochoa-Rivera, J.C. (2008), "Prospecting droughts with stochastic artificial neural networks", J. Hydrology, 352(1-2), 174-180 https://doi.org/10.1016/j.jhydrol.2008.01.006
- Phoon, K.K., Huang, S.P. and Quek, S.T. (2002), "Implementation of Karhunen-Loeve Expansion for simulation using a wavelet-Galerkin scheme", Probabilist. Eng. Mech., 17(3), 293-303 https://doi.org/10.1016/S0266-8920(02)00013-9
- Qi, M. and Zhang, G.P. (2008), "Trend time-series modeling and forecasting with neural networks", IEEE T. Neural Networ., 19(5), 808-816 https://doi.org/10.1109/TNN.2007.912308
- Sakamoto, S. and Ghanem, R. (2002), "Simulation of multi-dimensional non-gaussian non-stationary random fields", Probabilist. Eng. Mech., 17(2), 167-176 https://doi.org/10.1016/S0266-8920(01)00037-6
- Sanchez, M.S. and Sarabia, L.A. (2002), "A stochastic trained neural network for nonparametric hypothesis testing", Chemometr. Intell. Lab. Syst., 63(2), 169-187 https://doi.org/10.1016/S0169-7439(02)00047-3
-
Schenk, C.A. and Schu
$\ddot{e}$ ller, G.I. (2005), Uncertainty Assessment of Large Finite Element Systems. Berlin Heidelberg: Springer -
Schenk, C.A., Pradlwarter, H.J. and Schu
$\ddot{e}$ ller, G.I. (2005), "Non-stationary response of large, non-linear finite element systems under stochastic loading", Comput. Struct., 83(14), 1086-1102 https://doi.org/10.1016/j.compstruc.2004.11.018 -
Schu
$\ddot{e}$ ller, G.I. (2001), "Computational stochastic mechanics – recent advances", Comput. Struct., 79(22-25), 2225-2234 https://doi.org/10.1016/S0045-7949(01)00078-5 -
Schu
$\ddot{e}$ ller, G.I. (2003), On Computational Procedures for Processing Uncertainties in Structural Mechanics. In:Waszczyszyn, Z., Pamin, J., editors. 2nd European Conference on Computational Mechanics, ECCM 2001, Cracow; 2003: CD-ROM, Doc 608, 1-24 -
Schu
$\ddot{e}$ ller, G.I., Spanos, P.D. editors. (2001), Monte Carlo simulation: Proceedings of the International Conference on Monte Carlo Simulation 2000. Lisse, Exton, PA: A.A. Balkema - Shi, Z. and Han, M. (2007), "Support vector echo-state machine for chaotic time-series prediction", IEEE T. Neural Networ., 18(2), 359-372 https://doi.org/10.1109/TNN.2006.885113
- Spanos, P.D. and Zeldin, B.A. (1998), "Monte Carlo treatment of random fields: A broad perspective", Appl. Mech. Rev., 51, 219-237 https://doi.org/10.1115/1.3098999
- Spanos, P.D., Beer, M. and Red-Horse, J. (2007), "Karhunen-Loéve expansion of stochastic processes with a modified exponential covariance kernel", J. Eng. Mech., ASCE, 133(7), 773-779 https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(773)
- Su, M.C. and Chang, H.T. (2001), "A new model of self-organizing neural networks and its application in data projection", IEEE T. Neural Networ., 12(1), 153-158 https://doi.org/10.1109/72.896805
- Teoh, E.J., Tan, K.C. and Xiang, C. (2006), "Estimating the number of hidden neurons in a feedforward network using the singular value decomposition", IEEE T. Neural Networ., 17(6), 1623-1629 https://doi.org/10.1109/TNN.2006.880582
- Turchetti, C., Conti, M., Crippa, P. and Orcioni, S. (1998), "On the approximation of stochastic processes by approximate identity neural networks", IEEE T. Neural Networ., 9(6), 1069-1085 https://doi.org/10.1109/72.728353
- Turchetti, C., Crippa, P., Pirani, M. and Biagetti, G. (2008), "representation of nonlinear random transformations by non-gaussian stochastic neural networks", IEEE T. Neural Networ., 19(6), 1033-1060 https://doi.org/10.1109/TNN.2007.2000055
- Vanmarcke, E.H. (1983), Random Fields. Cambridge, MA: MIT Press
- Yuen, K.-V., Katafygiotis, L.S. and Beck, J.L. (2002), "Spectral density estimation of stochastic vector processes", Probabilist. Eng. Mech., 17(3), 265-272 https://doi.org/10.1016/S0266-8920(02)00011-5
- Zhang, G.P. and Kline, D.M. (2007), "Quarterly time-series forecasting with neural networks", IEEE T. Neural Networ., 18(6), 1800-1814 https://doi.org/10.1109/TNN.2007.896859
Cited by
- A Multiwavelet Neural Network-Based Response Surface Method for Structural Reliability Analysis vol.30, pp.2, 2015, https://doi.org/10.1111/mice.12086
- A Wavelet Support Vector Machine-Based Neural Network Metamodel for Structural Reliability Assessment vol.32, pp.4, 2017, https://doi.org/10.1111/mice.12257
- Bootstrapped Artificial Neural Networks for the seismic analysis of structural systems vol.67, 2017, https://doi.org/10.1016/j.strusafe.2017.03.003
- An artificial neural network approach for stochastic process power spectrum estimation subject to missing data vol.52, 2015, https://doi.org/10.1016/j.strusafe.2014.10.001
- Polynomial Correlated Function Expansion for Nonlinear Stochastic Dynamic Analysis vol.141, pp.3, 2015, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000855
- An Adaptive Wavelet Frame Neural Network Method for Efficient Reliability Analysis vol.29, pp.10, 2014, https://doi.org/10.1111/mice.12117
- Non-Stationary Wind Pressure Prediction Based on A Hybrid Decomposition Algorithm of Wavelet Packet Decomposition and Variational Mode Decomposition vol.189, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/189/5/052038
- Lifetime prediction using accelerated test data and neural networks vol.87, pp.19, 2009, https://doi.org/10.1016/j.compstruc.2008.12.007
- A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability vol.38, pp.4, 2009, https://doi.org/10.12989/sem.2011.38.4.503
- An efficient reliability analysis strategy for low failure probability problems vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.209
- Efficient long-term fatigue analysis of deepwater risers in the time domain including wave directionality vol.78, pp.None, 2021, https://doi.org/10.1016/j.marstruc.2021.103002