Acknowledgement
Supported by : National Science Council
References
- Bolotin, V.V. (1965), Statistical Methods in Engineering Mechanics, Stroiizdat, Moscow
- Chang, T.P. and Chang, H.C. (1994), "Stochastic dynamic finite element analysis of a nonuniform beam", Int. J. Solids Struct., 31, 587-597 https://doi.org/10.1016/0020-7683(94)90139-2
- Chang, T.P. and Liu, Y.N. (1996), "Dynamic finite element analysis of a nonlinear beam subjected to a moving load", Int. J. Solids Struct., 33, 1673-1688 https://doi.org/10.1016/0020-7683(95)00128-X
- Chang, T.P., Lin, G.L. and Chang, E. (2006), "Vibration analysis of a beam with an internal hinge subjected to a random moving oscillator", Int. J. Solids Struct., 43, 6398-6412 https://doi.org/10.1016/j.ijsolstr.2005.10.013
- ElBeheiry, E.M. (2000), "Effects of small travel speed variations on active vibration control in modern vehicles", J. Sound Vib., 232, 857-875 https://doi.org/10.1006/jsvi.1999.2777
- Elishakoff, I., Ren, Y.J. and Shinozuka, M. (1995), "Improved finite element method for stochastic problems", Chaos Soliton. Fract., 5, 833-846 https://doi.org/10.1016/0960-0779(94)00157-L
- Esmailzadeh, E. and Ghorashi, M. (1995), "Vibration analysis of beams traversed by uniform partially distributed moving masses", J. Sound Vib., 184, 9-17 https://doi.org/10.1006/jsvi.1995.0301
- Esmailzadeh, E. and Jalilib, N. (2003), "Vehicle-passenger-structure interaction of uniform bridges traversed by moving vehicles", J. Sound Vib., 260, 611-635 https://doi.org/10.1016/S0022-460X(02)00960-4
- Feng, Q. and He, H. (2003), "Modeling of the mean Poincare' map on a class of random impact oscillators", Eur. J. Mech. A-Solid, 22, 267-281 https://doi.org/10.1016/S0997-7538(03)00015-9
- Fryba, L. (1999), Vibration of Solids and Structures Under Moving Loads, Telford, London
- Katz, R., Lee, C.W., Ulsoy, A.G. and Scott, R.A. (1988), "The dynamic response of rotating shaft subject to a moving load", J. Sound Vib., 122, 131-148 https://doi.org/10.1016/S0022-460X(88)80011-7
- Kleiber, M. and Hein, T.D. (1992), The Stochastic Finite Element Method, Wiley, Chichester
- Lee, H.P. (1994), "Dynamic response of a beam with intermediate point constraints subject to a moving load", J. Sound Vib., 171, 361-368 https://doi.org/10.1006/jsvi.1994.1126
- Lewis, E.E. (1987), Introduction to Reliability Engineering, John Wiley & Sons, New York
- Muscolino, G. (1996), "Dynamically modified linear structures: deterministic and stochastic response", J. Struct. Eng., ASCE, 122, 1044-1051
- Muscolino, G. and Sidoti A. (1999), "Dynamics of railway bridges subjected to moving mass with stochastic velocity", Structural Dynamics Eurodyn'99, 711-716
- Muscolino, G., Ricciardi, G. and Impollonia, N. (2000), "Improved dynamic analysis of structures with mechanical uncertainties under deterministic input", Prob. Eng. Mech., 15, 199-212 https://doi.org/10.1016/S0266-8920(99)00021-1
- Muscolino, G., Benfratello, S. and Sidoti, A. (2002), "Dynamics analysis of distributed parameter system subjected to a moving oscillator with random mass, velocity and acceleration", Prob. Eng. Mech., 17, 63-72 https://doi.org/10.1016/S0266-8920(01)00009-1
- Ricciardi, G. (1994), "Random vibration of beam under moving loads", J. Struct. Eng., ASCE, 120, 2361-2381
- Sadiku, S. and Leipholz, H.H.E. (1987), "On the dynamics of elastic systems with moving concentrated masses", Ing. Arch., 57, 223-242 https://doi.org/10.1007/BF02570609
- Sniady, P., Biemat, S., Sieniawska, R. and Zukowski, S. (1999), "Vibrations of the beam due to a load moving with stochastic velocity", Spanos, P.D. et al., editors. Proceedings of Computational Stochastic Mechanics (CSM'98), Amsterdam, Balkema
- Sobczyk, K., Wedrychowicz, S. and Spencer B.F. (1996), "Dynamics of structural systems with spatial randomness", Int. J. Solids Struct., 33, 1651-1669 https://doi.org/10.1016/0020-7683(95)00113-1
- Timoshenko, S. (1922), "On the forced vibration of bridge", Philos. Mag. Series, 43, 1018 https://doi.org/10.1080/14786442208633953
- Wang, R., Duan, Y.B. and Zang, Z. (2002), "Resonance analysis of finite-damping nonlinear vibration system under random disturbances", Eur. J. Mech. A-Solid, 21, 1083-1088 https://doi.org/10.1016/S0997-7538(02)01237-8
- Zibdeh, H.S. (1995), "Stochastic vibration of an elastic beam due to random moving loads and deterministic axial forces", Eng. Struct., 17, 530-535 https://doi.org/10.1016/0141-0296(95)00051-8
- Zibdeh, H.S. and Abu-Hilal, M. (2003), "Stochastic vibration of laminated composite coated beam traversed by a random moving load", Eng. Struct., 25, 397-404 https://doi.org/10.1016/S0141-0296(02)00181-5
Cited by
- Uncertainty Analysis on Vehicle-Bridge System with Correlative Interval Variables Based on Multidimensional Parallelepiped Model 2017, https://doi.org/10.1142/S0219876218500305
- Beam structural system moving forces active vibration control using a combined innovative control approach vol.12, pp.2, 2013, https://doi.org/10.12989/sss.2013.12.2.121
- Stochastic dynamic finite element analysis of bridge–vehicle system subjected to random material properties and loadings vol.242, 2014, https://doi.org/10.1016/j.amc.2014.05.038
- Dynamic analysis of bridge–vehicle system with uncertainties based on the finite element model vol.25, pp.4, 2010, https://doi.org/10.1016/j.probengmech.2010.05.004
- Dynamic analysis of bridge with non-Gaussian uncertainties under a moving vehicle vol.26, pp.2, 2011, https://doi.org/10.1016/j.probengmech.2010.08.004
- Evaluating the response statistics of an uncertain bridge–vehicle system vol.27, 2012, https://doi.org/10.1016/j.ymssp.2011.07.019
- Simulation of vibrations of Ting Kau Bridge due to vehicular loading from measurements vol.40, pp.4, 2011, https://doi.org/10.12989/sem.2011.40.4.471