DOI QR코드

DOI QR Code

Free vibration of laminated composite skew plates with central cutouts

  • Lee, Sang-Youl (Industry-Academy Cooperative Foundation, Joongbu University) ;
  • Park, Taehyo (Department of Civil Engineering, Hanyang University)
  • Received : 2008.01.08
  • Accepted : 2009.02.26
  • Published : 2009.03.30

Abstract

We performed a free vibration analysis of skew composite laminates with or without cutout based on the high-order shear deformation plate theory (HSDT). The effects of skew angles and ply orientations on the natural frequencies for various boundary conditions are studied using a nonlinear high-order finite element program developed for this study. The numerical results are in good agreement with those reported by other investigators for simple test cases, and the new results reported in this paper show the interactions between the skew angle, layup sequence and cutout size on the free vibration of the laminate. The findings highlight the importance of skew angles when analyzing laminated composite skew plates with cutout or without cutout.

Keywords

References

  1. ABAQUS (2007), ABAQUS/CAE User’s Manual, Version 6.7, Hibbitt, Karlsson and Sorensen Inc., USA
  2. Anlas, G. and Göoker, G. (2001), 'Vibration analysis of skew fibre-reinforced composite laminated plates', J. Sound Vib., 242, 265-276 https://doi.org/10.1006/jsvi.2000.3366
  3. Bardell, N.S. (1992), 'The free vibration of skew plates using the hierarchical finite element method', Comput. Struct., 45, 841-874 https://doi.org/10.1016/0045-7949(92)90044-Z
  4. Bathe, K.J. (1996), 'The finite element procedures in engineering analysis', Prentice Hall, New Jersey
  5. Bhimaraddi, A. and Stevens, L.K. (1984), 'A high order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates', J. Appl. Mech., 51, 195-198 https://doi.org/10.1115/1.3167569
  6. Han, W. and Dickinson, S.M. (1997), 'Free vibration of symmetrically laminated skew plates', J. Sound Vib., 208, 367-390 https://doi.org/10.1006/jsvi.1997.1198
  7. Hosokawa, K., Terada, Y. and Sakata, T. (1996), 'Free vibrations of clamped symmetrically laminated skew plates', J. Sound Vib., 189, 525-533 https://doi.org/10.1006/jsvi.1996.0033
  8. Kant, T., Varaiya, J.H. and Arora, C.P. (1990), 'Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes', Comput. Struct., 36, 401-420 https://doi.org/10.1016/0045-7949(90)90279-B
  9. Kennedy, J.B. and Huggins, M.V. (1964), 'Series solution of skewed stiffened plates', Proc. ASCE, J. Eng. Mech. Div., 90, 1-22
  10. Kennedy, J.B. and Tamberg, K.G. (1969), 'Programs of skew in concrete bridge design', Department of Highways, Downsview, Ontario, Canada, Report No. RR144
  11. Khdeir, A.A. and Reddy, J.N. (1991), 'Analytical solutions of refined plate theories of cross-ply composite laminates', J. Pressure Vessel Tech., 113, 570-578 https://doi.org/10.1115/1.2928797
  12. Kim, K.D. and Park, T. (2002), 'An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells', Struct. Eng. Mech., 13, 387-410 https://doi.org/10.12989/sem.2002.13.4.387
  13. Kumar, A. and Shrivastava, R.P. (2005), 'Free vibration of square laminates with delamination around a central cutout using HSDT', Comput. Struct., 70, 317-333 https://doi.org/10.1016/j.compstruct.2004.08.040
  14. Lee, S.Y. and Wooh, S.C. (2004), 'Finite element vibration analysis of composite box structures using the high order plate theory', J. Sound Vib., 277, 801-814 https://doi.org/10.1016/j.jsv.2003.09.024
  15. Lee, S.Y. and Yhim, S.S. (2004), 'Dynamic analysis of composite plates subjected to multi-moving loads based on a third order theory', Int. J. Solids Struct., 41, 4457-4472 https://doi.org/10.1016/j.ijsolstr.2004.03.021
  16. Mizusawa, T., Kajita, T. and Naruoka, M. (1979), 'Vibration of skew plates by using b-spline function', J. Sound Vib., 62, 301-308 https://doi.org/10.1016/0022-460X(79)90029-4
  17. Murthy, M.V.V. (1981),'An improved transverse shear deformation theory for laminated anisotropic plates', NASA Technical Paper. 1903, 1-37
  18. Park, T., Lee, S.Y., Seo, J.W. and Voyiadjis, G.Z. (2008), 'Structural dynamic behavior of skew sandwich plates with laminated composite faces', Compos. Part B, 39, 316-326 https://doi.org/10.1016/j.compositesb.2007.01.003
  19. Reddy, A.R.K. and Palaninathan, R. (1999), 'Free vibration of skew laminates', Comput. Struct., 70, 415-423 https://doi.org/10.1016/S0045-7949(98)00166-7
  20. Reddy, J.N. (2004), 'Mechanics of laminated composite plates and shells : Theory and analysis', CRC press, New York
  21. Reddy, J.N. and Phan, N.D. (1985), 'Stability and vibration of isotropic, orthotropic, and laminated plates according to a higher-order shear deformation theory', J. Sound Vib., 98, 157-170 https://doi.org/10.1016/0022-460X(85)90383-9
  22. Reddy, J.N. and Krishnan, S. (2001), 'Vibration control of laminated plates using embedded smart layers', Struct. Eng. Mech., 12, 135-156 https://doi.org/10.12989/sem.2001.12.2.135
  23. Singha, M.K. and Ganapathi, M. (2004), 'Large amplitude free flexural vibrations of laminated composite skew plates', Int. J. Non-linear Mech., 38, 1709-1720 https://doi.org/10.1016/j.ijnonlinmec.2004.04.003
  24. Sivakumar, K., Iyengar, N.G.R. and Deb, K. (1999), 'Free vibrations of laminated composite plates with cutout', J. Sound Vib., 221, 443-470 https://doi.org/10.1006/jsvi.1998.2034
  25. Szilard, R. (1974), 'Theory and analysis of plates : Classical and numerical methods', Prentice-hall, New Jersey
  26. Wang, C.M., Ang, K.K., Yang, L. and Watanabe, E. (2000), 'Free vibration of skew sandwich plates with laminated facings', J. Sound Vib., 235, 317-340 https://doi.org/10.1006/jsvi.2000.2918
  27. Wang, S. (1997), 'Free vibration analysis of skew fibre-reinforced composite laminates based on first-order shear deformation plate theory', Comput. Struct., 63, 525-538 https://doi.org/10.1016/S0045-7949(96)00357-4

Cited by

  1. Finite element dynamic stability analysis of laminated composite skew plates containing cutouts based on HSDT vol.70, pp.8, 2010, https://doi.org/10.1016/j.compscitech.2010.03.013
  2. Control of geometrically nonlinear vibrations of skew laminated composite plates using skew or rectangular 1–3 piezoelectric patches vol.9, pp.4, 2013, https://doi.org/10.1007/s10999-013-9224-z
  3. Dynamic instability of delaminated composite skew plates subjected to combined static and dynamic loads based on HSDT vol.58, 2014, https://doi.org/10.1016/j.compositesb.2013.10.073
  4. Effects of geometrical and material parameters on free vibration analysis of fiber metal laminated plates vol.14, pp.4, 2013, https://doi.org/10.1051/meca/2013062
  5. Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates vol.11, pp.5, 2009, https://doi.org/10.12989/scs.2011.11.5.359
  6. Weighted sum multi-objective optimization of skew composite laminates vol.69, pp.1, 2009, https://doi.org/10.12989/sem.2019.69.1.021