References
- Ayaz, F. (2004), "Application of differential transforms method to differential-algebraic equations", Appl. Math. Comput., 152, 648-657
- Bert, C.W. and Zeng, H. (2004), "Analysis of axial vibration of compound bars by differential transformation method", J. Sound Vib., 275, 641-647 https://doi.org/10.1016/j.jsv.2003.06.019
- Bickford, W.B. (1982), "A consistent higher order beam theory", Development Theor. Appl. Mech., 11, 137-15
- Bildik, N., Konuralp, A., Bek, F.O. and Küçükarslan, S. (2006), "Solution of different type of the partial differential equation by differential transform method and Adomian's decomposition method", Appl. Math. Comput., 172, 551-567 https://doi.org/10.1016/j.amc.2005.02.037
- Çatal, S. (2006), "Analysis of free vibration of beam on elastic soil using differential transform method", Struct. Eng. Mech., 24(1), 51-62 https://doi.org/10.12989/sem.2006.24.1.051
- Çatal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Model., 32, 1744-1757 https://doi.org/10.1016/j.apm.2007.06.010
- Çatal, S. and Çatal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24(2), 247-268 https://doi.org/10.12989/sem.2006.24.2.247
- Chen, C.K. and Ho, S.H. (1996), "Application of differential transformation to eigenvalue problem", J. Appl. Math. Comput., 79, 173-188 https://doi.org/10.1016/0096-3003(95)00253-7
- Chen, C.K. and Ho, S.H. (1999), "Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform", Int. J. Mech. Sci., 41, 1339-1356 https://doi.org/10.1016/S0020-7403(98)00095-2
- Chen, C.L. and Liu, Y.C. (1998), “Solution of two-point boundary-value problems using the differential transformation method”, J. Optimiz. Theory App., 99, 23-35 https://doi.org/10.1023/A:1021791909142
- Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340 https://doi.org/10.1115/1.3625046
- Doyle, P.F. and Pavlovic, M.N. (1982), "Vibration of beams on partial elastic foundations", J. Earthq. Eng.Struct. Dyn., 10, 663-674 https://doi.org/10.1002/eqe.4290100504
- Ertürk, V.S. (2007), "Application of differential transformation method to linear sixth-order boundary value problems", Appl. Math. Sci., 1, 51-58
- Ertürk, V.S. and Momani, S. (2007), "Comparing numerical methods for solving fourth-order boundary value problems", Appl. Math. Comput., 188, 1963-1968 https://doi.org/10.1016/j.amc.2006.11.075
- Esmailzadeh, E. and Ohadi, A.R. (2000), "Vibration and stability analysis of non-uniform Timoshenko beams under axial and distributed tangential loads", J. Sound Vib., 236, 443-456 https://doi.org/10.1006/jsvi.2000.2999
- Gruttmann, F. and Wagner, W. (2001), "Shear coefficient factors in Timoshenko's beam theory for arbitrary shaped cross-section", Comput. Mech., 27, 199-207 https://doi.org/10.1007/s004660100239
- Han, S.M., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theories", J. Sound Vib., 225, 935-988 https://doi.org/10.1006/jsvi.1999.2257
- Hassan, I.H.A.H (2002a), "On solving some eigenvalue problems by using differential transformation", Appl.Math. Comput., 127, 1-22 https://doi.org/10.1016/S0096-3003(00)00123-5
- Hassan, I.H.A.H (2002b), "Different applications for the differential transformation in the differential equations",Appl. Math. Comput., 129, 183-201 https://doi.org/10.1016/S0096-3003(01)00037-6
- Hetenyi, M. (1955), Beams on Elastic Foundations, 7th edn., The University of Michigan Press, Michigan
- Heyliger, P.R. and Reddy, J.N. (1988), "A higher-order beam finite element for bending and vibration problems",J. Sound Vib., 126(2), 309-326 https://doi.org/10.1016/0022-460X(88)90244-1
- Ho, S.H. and Chen, C.K. (2006), "Free transverse vibration of an axially loaded non-uniform sinning twisted Timoshenko beam using differential transform", Int. J. Mech. Sci., 48, 1323-1331 https://doi.org/10.1016/j.ijmecsci.2006.05.002
- Jang, M.J. and Chen, C.L. (1997), "Analysis of the response of a strongly non-linear damped system using a differential transformation technique", Appl. Math. Comput., 88, 137-151 https://doi.org/10.1016/S0096-3003(96)00308-6
- Jang, M.J., Chen, C.L. and Liu, Y.C. (2000), "On solving the initial-value problems using differential transformation method", Appl. Math. Comput., 115, 145-160 https://doi.org/10.1016/S0096-3003(99)00137-X
- Kaya, M.O. and Ozgumus, O.O. (2007), "Flexural-torsional-coupled vibration analysis of axially loaded closedsection composite Timoshenko beam by using DTM", J. Sound Vib., 306, 495-506 https://doi.org/10.1016/j.jsv.2007.05.049
- Kurnaz, A., Oturanç, G. and Kiris, M.E. (2005), "n-Dimensional differential transformation method for solving PDEs", Int. J. Comput. Math., 82(3), 369-380 https://doi.org/10.1080/0020716042000301725
- Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74, 81-87 https://doi.org/10.1016/0022-460X(81)90493-4
- Malik, M. and Dang, H.H. (1998), "Vibration analysis of continuous systems by differential transformation", Appl. Math. Comput., 96, 17-26 https://doi.org/10.1016/S0096-3003(97)10076-5
- Murthy, A.V. (1970), "Vibration of short beams", AIAA, 8, 34-38 https://doi.org/10.2514/3.5602
- Özdemir, Ö. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289, 413-420 https://doi.org/10.1016/j.jsv.2005.01.055
- Ozgumus, O.O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of double tapered rotating Euler- Bernoulli beam by using the differential transform method", Meccanica, 41, 661-670 https://doi.org/10.1007/s11012-006-9012-z
- Ozgumus, O.O. and Kaya, M.O. (2007), "Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending-torsion coupling", Int. J. Eng. Sci., 45, 562-586 https://doi.org/10.1016/j.ijengsci.2007.04.005
- Rajasekaran, S. (2008), "Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods", Struct. Eng. Mech., 28(2), 221-238 https://doi.org/10.12989/sem.2008.28.2.221
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, Second Edition, JohnWiley, NY
- Reddy, J.N. (2007), Theory and Analysis of Elastic Plates and Shells, Second Edition, Taylor & Francis;Philadelphia, PA
- Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibrations ofprismatic bars", Philos. Mag., 41, 744-746
- Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier Science Ltd., The Netherlands
- West, H.H. and Mafi, M. (1984), "Eigenvalues for beam columns on elastic supports", J. Struct. Eng., 110(6),1305-1320 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:6(1305)
- Yesilce, Y. and Catal, H.H. (2008), "Free vibration of semi-rigid connected Reddy-Bickford piles embedded in elastic soil", Sadhana-Academy Proceedings in Engineering Science, 33(6), 781-801
- Yokoyama, T. (1991), "Vibrations of Timoshenko beam-columns on two parameter elastic foundations", Earthq. Eng. Struct. Dyn., 20, 355-370 https://doi.org/10.1002/eqe.4290200405
- Zhou, J.K. (1986), Differential Transformation and Its Applications for Electrical Circuits, Huazhong UniversityPress, Wuhan China
Cited by
- A novel four variable refined plate theory for laminated composite plates vol.22, pp.4, 2016, https://doi.org/10.12989/scs.2016.22.4.713
- A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
- Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories vol.62, pp.1, 2012, https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.969
- On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
- Dynamic basic displacement functions for free vibration analysis of tapered beams vol.17, pp.14, 2011, https://doi.org/10.1177/1077546310396430
- Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.847
- A new first shear deformation beam theory based on neutral surface position for functionally graded beams vol.15, pp.5, 2013, https://doi.org/10.12989/scs.2013.15.5.467
- Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias vol.53, pp.3, 2015, https://doi.org/10.12989/sem.2015.53.3.537
- Lateral-Torsional Buckling of Nonuniformly Loaded Beam Using Differential Transformation Method vol.16, pp.07, 2016, https://doi.org/10.1142/S0219455415500340
- Differential transform method for free vibration analysis of a moving beam vol.35, pp.5, 2010, https://doi.org/10.12989/sem.2010.35.5.645
- Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium vol.40, pp.4, 2009, https://doi.org/10.12989/sem.2011.40.4.583
- Response of forced Euler-Bernoulli beams using differential transform method vol.42, pp.1, 2009, https://doi.org/10.12989/sem.2012.42.1.095
- A novel meshless particle method for nonlocal analysis of two-directional functionally graded nanobeams vol.41, pp.7, 2009, https://doi.org/10.1007/s40430-019-1799-3