DOI QR코드

DOI QR Code

Optimization of a telescope movable support structure by means of Volumetric Displacements

  • Ortega, Nestor F. (Departamento de Ingenieria - Universidad Nacional del Sur) ;
  • Robles, Sandra I. (Departamento de Ingenieria - Universidad Nacional del Sur)
  • Received : 2007.06.01
  • Accepted : 2009.02.02
  • Published : 2009.03.10

Abstract

The Purpose of this paper is to show the applicability of a methodology, developed by the authors, with which to perform the mechanical optimization of space truss structures strongly restricted. This methodology use a parameter call "Volumetric Displacement", as the Objective Function of the optimization process. This parameter considers altogether the structure weight and deformation whose effects are opposed. The Finite Element Method is employed to calculate the stress/strain state and the natural frequency of the structure through a structural linear static and natural frequency analysis. In order to show the potentially of this simple methodology, its application on a large diameter telescope structure (10 m) considering the strongly restriction that became of its use, is presented. This methodology, applied in previous works on continuous structures, such as shell roof and fluid storage vessels, is applied in this case to a space truss structure, with the purpose of generalize its applicability to different structural topology. This technique could be useful in the morphology design of deployable and retractable roof structures, whose use has extensively spread in the last years.

Keywords

References

  1. Abel, J.F. (2000), "Structures by Medwadowski", J. Int. Assoc. Shell Spatial Struct. IASS, 41(92), 137-146
  2. Algor15 Professional Mech/VE (2002), Docutech, Linear Stress and Dynamics, Reference Division., Pittsburgh, Pennsylvania
  3. Blaurock, C., McGinnis, M., Kim, K. and Mosier, G.E. (2005), "Structural-thermal-optical performance (STOP) sensitivity analysis for the James Webb Space Telescope", Proc. SPIE, 5867, 246-256 https://doi.org/10.1117/12.618697
  4. Davison, W. (1990), "Design strategies for very large telescopes", Proc. SPIE, 1236, 878-883 https://doi.org/10.1117/12.19258
  5. Gunnels, S., Davison, W., Cuerden, B. and Hertz, E. (2004), "The Giant Magellan Telescope (GMT) structure",Proc. SPIE, 5495, 168-179
  6. Jessen, N.C., Nørgaard-Nielsen, H.U. and Schroll, J. (2007), "CFRP lightweight structures for extremely large telescopes", Composite Structures,doi:10.1016/j.compstruct
  7. Kan, F. and Eggers, D. (2006), "Wind vibration analyses of Giant Magellan Telescope", Proceedings of SPIE,6271
  8. Lieber, M. (2005), "Optical system performance with combined structural/optical sensitivity to eigenvector perturbations", Proc. SPIE, 5867 https://doi.org/10.1117/12.617742
  9. Linares, I., Hude, C. and González, J. (2000), "Overview of the Gran Telescopio Canarias global model simulation", Instituto de Astrofísica de Canarias, PUB/TELE/0032-L, 14 https://doi.org/10.1117/12.393921
  10. Martín Alvarez, P. et al. (1997), Gran Telescopio Canarias, Conceptual Design, Instituto de Astrofísica de Canarias, published by Grantecan S. A
  11. Medwadowski, S.J. (1986), "Space frames in architecture and science", J. Int. Assoc. Shell Spatial Struct. IASS,27(92), 7-12
  12. Mendoza, M., Farah, A. and Schneider, E. (2004), "Conceptual design and structural analisis for an 8.4 m telescope", Proc. SPIE, 5495, 526-536 https://doi.org/10.1117/12.563388
  13. Meiring, K., Kock, M. and Esterhuize, W. (2003), "Steel structures for a large telescope, Southern African Large Telescope", Steel Construction, Southern African Institute of Steel Construction , 27(3), 5-8
  14. Ortega, N.F. and Arias, J.V. (1998), "Comparison of mechanical efficiency between an Hyperbolic Paraboloid and experimental model", Proceedings of IV World Congress on Computational Mechanics, Bs. As., Argentina
  15. Ortega, N.F. and Robles, S.I. (2005), "Form finding of revolution shells by analysing mechanical behaviour by means of the finite element method", J. Strain Anal., 40(8), 775-784 https://doi.org/10.1243/030932405X30975
  16. Pan, J., Asenjo, C., Orden, A. and Dilla, A. (2000), "GTC telescope mechanics design" Instituto de Astrofísica de Canarias, PUB/TELE/0031-L, 14
  17. Roberts, S., Sun, S. and Kerley, D. (2005), "Optical performance analysis and optimization of large telescope structural designs", Proc. SPIE, 5867 https://doi.org/10.1117/12.618568
  18. Robles, S.I. and Ortega, N.F. (2000), "Optimización del diseño de láminas. Obtención de las mínimas Flexiones Volumétricas Estructurales", Procceeding Mecánica Computacional, XIX, 287-292
  19. Robles, S.I. and Ortega, N.F. (2001), "Study of Volumetric Displacements of shells", J. Int. Assoc. Shell Spatial Struct. IASS, 42(137), 139-147
  20. Smith, D., Avitabile, P., Gwaltney, G., Cho, M. and Sheehan, M. (2004), "Wind induced structural response of a large telescope", Proc. SPIE, 5495, 258-269 https://doi.org/10.1117/12.550465
  21. Willem, S., Esterhuyse, P., Strydom, D., Swiegers, J. and Wannenburg, J. (2003), "Structural design of de Southern African Large Telescope", Proc. SPIE, 4837, 272-283 https://doi.org/10.1117/12.457952

Cited by

  1. Structural Optimization of Deploying Structures Composed of Linkages vol.28, pp.3, 2014, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000272
  2. Shape-sizing nested optimization of deployable structures using SQP vol.21, pp.7, 2014, https://doi.org/10.1007/s11771-014-2257-0
  3. The universal scissor component: Optimization of a reconfigurable component for deployable scissor structures vol.48, pp.2, 2016, https://doi.org/10.1080/0305215X.2015.1011151