References
- Al-Gahtani, H.J. (1996), "Exact stiffnesses for tapered members", J. Struct. Eng., ASCE, 122(10), 1234-1239 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:10(1234)
- Balkaya, C. (2001), "Behavior and modeling of nonprismatic members having T-sections", J. Struct. Eng., ASCE., 127(8), 940-946 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:8(940)
- Balkaya, C., Kalkan, E. and Yuksel, S.B. (2006), "FE analysis and practical modeling of RC multi-bin circular silos", ACI Struct. J., 103(3), 365-371
- Bathe, K.J. (1996), Finite Element Procedures. Prentice Hall Publisher, NJ, USA
- Brown, C.J. (1984), "Approximate stiffness matrix for tapered beams", J. Struct. Eng., ASCE, 110(12), 3050-3055 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:12(3050)
- CSI (2007a), Computer and Structures Inc. SAP2000 User's Manual. Berkeley, CA
- CSI (2007b), Computer and Structures Inc. ETABS User’s Manual. Berkeley, CA
- Eisenberger, M. (1985), "Explicit Stiffness matrices for non-prismatic members", Comput. Struct., 20(4), 715-720 https://doi.org/10.1016/0045-7949(85)90032-X
- Eisenberger, M. (1991), "Stiffness matrices for non-prismatic members including transverse shear", Comput. Struct., 40(4), 831-835 https://doi.org/10.1016/0045-7949(91)90312-A
- El-Mezaini, N., Balkaya, C. and Citipitioglu, E. (1991), "Analysis of frames with nonprismatic members", J. Struct. Eng., ASCE., 117(6), 1573-1592 https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1573)
- Friedman, Z. and Kosmatka, J.B. (1992a), "Exact stiffness matrix of a non-uniform beam-I. Extension, torsion, and bending of a Bernoulli-Euler beam", Comput. Struct., 42(5), 671-682 https://doi.org/10.1016/0045-7949(92)90179-4
- Friedman, Z. and Kosmatka, J.B. (1992b), "Exact stiffness matrix of a non-uniform beam-II. Bending of a Timoshenko beam", Comput. Struct., 49(3), 545-555 https://doi.org/10.1016/0045-7949(93)90056-J
- Funk, R.R. and Wang, K.T. (1988), "Stiffness of non-prismatic members", J. Struct. Eng., ASCE, 114(2), 489-494 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:2(489)
- Hibbeler, R. (2002), Structural analysis, Prentice-Hall, Inc., Fifth Edition, Upper Saddle River, New Jersey 07548
- Horrowitz, B. (1997), "Singularities in elastic finite element analysis", Concrete Int., December, 33-36
- Hu, X.M., Zheng, D.S. and Yang, L. (2006), "Experimental behaviour of extended end-plate composite beam-tocolumn joints subjected to reversal of loading", Struct. Eng. Mech. 24(3), 307-321 https://doi.org/10.12989/sem.2006.24.3.307
- Lee, C.H., Jung, J.H., Oh, M.H. and Koo, E. (2003), "Cyclic seismic testing of steel moment connections reinforced with welded straight haunch", Eng. Struct., 25(14), 1743-1753 https://doi.org/10.1016/S0141-0296(03)00176-7
- Maugh, L.C. (1964), Statically Indeterminate Structures: Continuous Girders and Frames with Variable Moment of Inertia, John&Wiley, New York, 202-243
- Medwadowski, S.J. (1984), "Nonprismatic shear beams", J. Struct. Eng., ASCE, 110(5), 1067-1082 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(1067)
- Oh, S.H., Kim, Y.J. and Moon, T.S. (2007), "Cyclic performance of existing moment connections in steel retrofitted with a reduced beam section and bottom flange reinforcements", Can. J. Civ. Eng., 34(2), 199-209 https://doi.org/10.1139/l06-125
- Ozay, G. and Topcu, A. (2000), "Analysis of frames with non-prismatic members", Can. J. Civ. Eng., 27, 17-25 https://doi.org/10.1139/cjce-27-1-17
- Pampanin, S., Christopoulos, C. and Chen, T.H. (2006), "Development and validation of a metallic haunch seismic retrofit solution for existing under designed RC frame buildings", Earthq. Eng. Struct. D., 35(14), 1739-1766 https://doi.org/10.1002/eqe.600
- Portland Cement Association (PCA) (1958), "Beam factors and moment coefficients for members of variable cross-section", Handbook of frame constants, Chicago
- Shanmugam, N.E., Ng, Y.H. and Liew, J.Y.R. (2002), "Behaviour of composite haunched beam connection", Eng. Struct., 24(11), 1451-1463 https://doi.org/10.1016/S0141-0296(02)00093-7
- Tanaka, N. (2003), "Evaluation of maximum strength and optimum haunch length of steel beam-end with horizontal haunch", Eng. Struct., 25 (2), 229-239 https://doi.org/10.1016/S0141-0296(02)00146-3
- Tartaglione, L.C. (1991), Structural Analysis, McGraw-Hill, Ins., United States of America
- Tena-Colunga, A. (1996), "Stiffness formulation for nonprismatic beam elements", J. Struct. Eng., ASCE, 122(12), 1484-1489 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1484)
- Timoshenko, S.P. and Young, D.H. (1965), Theory of Structures, McGraw-Hill Book Co., Inc., New York, USA
- Valderbilt, M.D. (1978), "Fixed-end action and stiffness matrices for non-prismatic beams", J. Am. Concr. Inst., 75(1), 290-298
- Weaver, W. and Gere, J.M. (1990), Matrix Analysis of Framed Structures, Van Nostrand Reinhold, New York
- Yuksel, S.B. (2008) "Slit connected coupling beams for tunnel form building structures", J. Struct. Des. Tall Spec., 17(3), 579-600. DOI: 10.1002/tal.367
- Yuksel S.B. and Arikan S. (2009), "A new set of design aids for the groups of four cylindrical silos due to interstice and internal loadings", J. Struct. Des. Tall Spec., DOI: 10.1002/tal.399
Cited by
- Design Force Estimation Using Artificial Neural Network for Groups of Four Cylindrical Silos vol.13, pp.4, 2010, https://doi.org/10.1260/1369-4332.13.4.681
- Performance of non-prismatic simply supported prestressed concrete beams vol.52, pp.4, 2014, https://doi.org/10.12989/sem.2014.52.4.723
- Coupled thermal and structural analysis of roller compacted concrete arch dam by three-dimensional finite element method vol.36, pp.4, 2010, https://doi.org/10.12989/sem.2010.36.4.401
- Design forces for groups of six cylindrical silos by artificial neural network modelling vol.165, pp.10, 2012, https://doi.org/10.1680/stbu.10.00049
- Design Formulas for the Groups of Six Cylindrical Silos Due to Interstice Loadings vol.14, pp.2, 2011, https://doi.org/10.1260/1369-4332.14.2.265
- Discussion of the paper ‘Equivalent representations of beams with periodically variable cross-sections’ by Tianxin Zheng and Tianjian Ji [Eng Struct 39 (2011) 1569–1583] vol.33, pp.10, 2011, https://doi.org/10.1016/j.engstruct.2011.06.010
- Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5 vol.42, pp.6, 2009, https://doi.org/10.12989/sem.2012.42.6.849
- Modeling for fixed-end moments of I-sections with straight haunches under concentrated load vol.23, pp.5, 2009, https://doi.org/10.12989/scs.2017.23.5.597