References
- Asku, G. and Ali, R. (1976), "Free vibration analysis of stiffened plates using finite difference method", J. Sound Vib., 48, 15-25 https://doi.org/10.1016/0022-460X(76)90367-9
- Asku, G. (1982), "Free vibration analysis of stiffened plates by including the effect of in-plane inertia", J. Appl. Mech., 49, 206-212 https://doi.org/10.1115/1.3161972
- Barrette, M., Berry, A. and Beslin, O. (2000), "Vibration of stiffened plates using hierarchical trigonometric functions", J. Sound Vib., 235, 727-747 https://doi.org/10.1006/jsvi.2000.2978
- Chan, H.C., Cai, C.W. and Cheung, Y.K. (1991), "A static solution of stiffened plates", Thin Wall. Struct., 11, 291-303 https://doi.org/10.1016/0263-8231(91)90017-D
- Fletcher, L. (1959), "The frequency of vibrations of rectangular plates", J. Appl. Mech., Trans., ASME, 81, 290-292
- Ghosh, A. and Biswal, K. (1996), "Free-vibration analysis of stiffened laminated plates using higher-order shear deformation theor"”, Finite Elem. Anal. Des., 22, 143-161 https://doi.org/10.1016/0168-874X(95)00051-T
- Harik, I.E. and Guo, M. (1993), "Finite element analysis of eccentrically stiffened plates in free vibration", Comput. Struct., 49, 1007-1015 https://doi.org/10.1016/0045-7949(93)90012-3
- Harik, I. and Salamoun, G. (1988), "The analytical strip method of solution for stiffened rectangular plates", Comput. Struct., 29, 283-291 https://doi.org/10.1016/0045-7949(88)90261-1
- Harris, C.M. and Crede, C.E. (1961), "Shock and vibration handbook", McGraw-Hill, New-York
- Kirk, C.L. (1970), "Natural frequency of stiffened rectangular plates", J. Sound Vib., 13, 375-388 https://doi.org/10.1016/S0022-460X(70)80043-8
- Koko, T.S. (1990), "Super finite elements for non-linear static and dynamic analysis of stiffened plate structures", Ph.D. Dissertation, University of British Columbia
- Koko, T.S. and Olson, M.D. (1991), "Non-linear analysis of stiffened plates using super element", Int. J. Numer. Meth. Eng., 31, 319-343 https://doi.org/10.1002/nme.1620310208
- Kumar, Y. and Mukhopadhyay, M. (2002), "Transient response analysis of laminated stiffened plates", Compos. Struct., 58(1), 97-107 https://doi.org/10.1016/S0263-8223(02)00036-3
- Long, B.R. (1971), "A stiffness-type analysis of the vibration of a class of stiffened plates", J. Sound Vib., 16, 323-335 https://doi.org/10.1016/0022-460X(71)90590-6
- Mead, D.J., Zhu, D.C. and Bardell, N.S. (1988), "Free vibration of orthogonally stiffened flat plate", J. Sound Vib., 127, 19-48 https://doi.org/10.1016/0022-460X(88)90348-3
- Mukherjee, N. and Chattopadhyay, T. (1994), "Improved free vibration analysis of stiffened plates by dynamic element method", Comput. Struct., 52, 259-264 https://doi.org/10.1016/0045-7949(94)90278-X
- Mukherjee, A. and Mukhopadhyay, M. (1989), "Finite element free vibration of eccentrically stiffened plates", Comput. Struct., 33, 295-305 https://doi.org/10.1016/0045-7949(89)90153-3
- Mukhopadhyay, M. (1989), "Vibration and stability of stiffened plates by semi-analytic finite difference method, Part I: Consideration of bending displacement only", J. Sound Vib., 130, 27-39 https://doi.org/10.1016/0022-460X(89)90517-8
- Mukhopadhyay, M. (1989), "Vibration and stability of stiffened plates by semi-analytic finite difference method, Part II: Consideration of bending and axial displacements", J. Sound Vib., 130, 41-53 https://doi.org/10.1016/0022-460X(89)90518-X
- Park, B. and Cho, S. (2006), "Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosion loadings", Int. J. of Impact Eng., 32, 1721-1736 https://doi.org/10.1016/j.ijimpeng.2005.01.005
- Patel, S., Datta, P. and Sheikh, A. (2006), "Buckling and dynamic instability analysis of stiffened shell panels", Thin Wall. Struct., 44, 321-333 https://doi.org/10.1016/j.tws.2006.03.004
- Peng, L. and Kitipornchai, S. (2006), "Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method", J. Sound Vib., 289, 421-449 https://doi.org/10.1016/j.jsv.2005.02.023
- Peng-Cheng, S., Dade, H. and Zongmu, W. (1987), "Static, vibration and stability analysis of stiffened plates using B spline functions", Comput. Struct., 27, 73-78 https://doi.org/10.1016/0045-7949(87)90182-9
- Qing, G., Qiu, J. and Liu, Y. (2006), "Free vibration analysis of stiffened laminated plates", Int. J. Solids Struct., 43, 1357-1371 https://doi.org/10.1016/j.ijsolstr.2005.03.012
- Rikards, R., Chate, A. and Ozolinsh, O. (2001), "Analysis for buckling and vibrations of composite stiffened shells and plates", Compos. Struct., 51, 361-370 https://doi.org/10.1016/S0263-8223(00)00151-3
- Schittkowski, K. (1985), "A unified outline of non-linear programming algorithms", J. Mechanisms, Transmissions and Automation in Design, 107, 449-453 https://doi.org/10.1115/1.3260744
- Shen, P.C., Dade, H. and Wang, Z. (1987), "Static, vibration and stability analysis of stiffened plates using Bspline functions", Comput. Struct., 27, 73-78 https://doi.org/10.1016/0045-7949(87)90182-9
- Wah, T. (1964), "Vibration of stiffened plates", Aeronaut. Quart., 15, 285-298 https://doi.org/10.1017/S0001925900010891
- Wittrick, W.H. (1968), "General sinusoidal stiffness matrices for buckling and vibration analysis of thin flatwalled structures", Int. J. Mech. Sci., 10, 49-966 https://doi.org/10.1016/0020-7403(68)90049-0
- Wu, C.L. and Cheung, Y.K. (1974), "Frequency analysis of rectangular plates continuous in one or two directions", Earthq. Eng. Struct. Dyn., 3, 3-14
- Zhang, W., Wang, A., Vlahopoulos, N. and Wu, K. (2005), "Vibration analysis of stiffened plates under heavy fluid loading by an energy finite element analysis formulation", Finite Elem. Anal. Des., 41, 1056-1078 https://doi.org/10.1016/j.finel.2004.10.012
Cited by
- Design space representation of channel members for industrial applications vol.14, pp.3, 2014, https://doi.org/10.1007/s13296-014-3009-6