DOI QR코드

DOI QR Code

Effects of stiffness on reflection and transmission of micropolar thermoelastic waves at the interface between an elastic and micropolar generalized thermoelastic solid

  • Received : 2006.10.20
  • Accepted : 2008.12.04
  • Published : 2009.01.30

Abstract

The reflection and transmission of micropolar thermoelastic plane waves at the interface between an elastic solid and micropolar generalized thermoelastic solid is discussed. The interface boundary conditions obtained contain interface stiffness (normal stiffness and transverse stiffness). The expressions for the reflection and transmission coefficients which are the ratios of the amplitudes of reflected and transmitted waves to the amplitude of incident waves are obtained for normal force stiffness, transverse force stiffness and welded contact. Numerical calculations have been performed for amplitude ratios of various reflected and transmitted waves. The variations of amplitude ratios with angle of incident wave have been depicted graphically. It is found that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, micropolarity and thermal distribution of the media.

Keywords

References

  1. Angel, T.C. and Achenbach, J.D. (1985), "Reflection and transmission of elastic waves by a periodic array of crack", J. Appl. Mech., 52, 33-41. https://doi.org/10.1115/1.3169023
  2. Baik, J.M. and Thompson, R.B. (1984), "Ultrasonic Scattering from imperfect interfaces a quasi-static model", J. Nondestruct. Eval., 4, 177-196. https://doi.org/10.1007/BF00566223
  3. Boschi, E. and Iesan, D. (1973), "A generalized theory of linear micropolar thermoelasticity", Meccanica, 7, 154-157.
  4. Bullen, K.E. (1963), "An Introduction to theory of seismology, Cambridge University press, Cambridge.
  5. Chen, W.Q., Cai, J.B., Ye, G.R. and Wang, Y.F. (2004), "Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer", Int. J. Solid Struct., 41, 5247-5263. https://doi.org/10.1016/j.ijsolstr.2004.03.010
  6. Dhaliwal, R.S. and Singh, A. (1980), "Dynamical coupled thermoelasticity", Hindustan Publishers, Delhi.
  7. Eringen, A.C. (1968), "Theory of micropolar elasticity 'in' Fracture", Chap. 7, Vol. II, Academic press, Newyork, Ed. H. Leibowitz.
  8. Eringen, A.C. (1970), "Foundations of micropolar thermoelasticity", Int. Cent. for. Mech. Studies. Courses and Lectures, No.23, Springer-Verlag, Wien.
  9. Eringen, A.C. (1984), "Plane waves in non-local micropolar elasticity", Int. J. Eng. Sci., 22, 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5
  10. Eringen, A.C. (1999), "Microcontinuum field theory I: Fondations and solids", Springer-Verlag, Berlin.
  11. Eringen, A.C. and Suhubi, E.S. (1964), "Non-linear theory of microelastic solids", I, II, Int. J. Eng. Sci., 2, 189-389. https://doi.org/10.1016/0020-7225(64)90004-7
  12. Fan, H. and Sze, K.Y. (2001), "A micro-mechanics model for imperfect interface in dielectric materials", Mech. Mater., 33, 363-370. https://doi.org/10.1016/S0167-6636(01)00053-9
  13. Jones, J.P. and Whittier, J.S. (1967), "Waves in a flexible bounded interface", J. Appl. Mech., 34, 905-909. https://doi.org/10.1115/1.3607854
  14. Kumar, R. (2000), "Wave propagation in a micropolar viscoelastic generalized thermoelastic solid", Int. J. Eng. Sci., 38, 1377-1395. https://doi.org/10.1016/S0020-7225(99)00057-9
  15. Kumar, R. and Sarthi, P. (2006), "Reflection and refraction of thermoelastic plane waves at an interface between two thermoelastic media without energy dissipation", Arch. Mech., 58(2), 155-185.
  16. Kumar, R. and Sharma, J.N. (2005), "Reflection of plane waves from the boundaries of a micropolar thermoelastic half-space without energy dissipation", Int. J. Appl. Mech. Eng., 10(4), 631-645.
  17. Kumar, R. and Singh, B. (1996), "Wave propagation in a micropolar generalized thermoelastic body with streach", Proc. Indian Acad. Sci. (Math. Sci.), 106, 183-199.
  18. Kumar, R. and Singh, B. (1998), "Reflection of plane waves from the flat boundary of a micropolar generalized thermoelastic half-space", Int. J. Eng. Sci., 36, 865-890. https://doi.org/10.1016/S0020-7225(97)00079-7
  19. Kumar, R. and Singh, B. (1998), "Reflection of plane waves from the flat boundary of a micropolar generalized thermoelastic with streach", Indian J. Pure. Ap. Ma., 29, 657-669.
  20. Kumar, R. and Singh, B. (1998), "Wave propagation in generalized thermo-microstrech elastic solid", Int. J. Eng. Sci., 36, 891-912. https://doi.org/10.1016/S0020-7225(97)00099-2
  21. Kumar, R., Sharma, N. and Ram, P. (2006), "Reflection and transmission of micrpolar elatic waves at an imperfect boundary", Multidiscipline Modeling in Materials and Structures (MMMS) [accepted].
  22. Lavrentyev, A.I. and Rokhlin, S.I. (1998), "Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids", J. Acoust. Soc. Am., 103(2), 657-664. https://doi.org/10.1121/1.423235
  23. Murty, G.S. (1975), "A theoretical model for the attenuation and dispersion of stonely waves at the loosely bounded interface of elastic half-spaces", Phys. Earth Planet. In., 11, 65-79. https://doi.org/10.1016/0031-9201(75)90076-X
  24. Nayfeh, A.H. and Nassar, E.M. (1978), "Simulation of the influence of bonding materials on the dynamic behaviour of laminated composites", J. Appl. Mech., 45, 822-828. https://doi.org/10.1115/1.3424426
  25. Nowacki, W. (1966), "Couple-stresses in the theory of thermoelasticity", In: Parkus, H., Sedov, L.I. (Eds.), Proc. IUTAM Symposia, Vienna, Springer-Verlag, 259-278.
  26. Othman, M.I., Slalaeh, Oman and Song, Y. (2006), "The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation", Acta Mechanica, 184, 189-204. https://doi.org/10.1007/s00707-006-0337-4
  27. Pilarski, A. and Rose, J.L. (1988), "A transverse wave ultrasonic oblique-incidence technique for interface weakness detection in adhesive bonds", J. Appl. Phys., 63, 300-307. https://doi.org/10.1063/1.340294
  28. Rokhlin, S.I. (1984), "Adhesive joint characterization by ultrasonic surface and interface waves", Adhesive Joints: Formation, characteristics and testing. Edited by K.L. Mittal (plenum, New York), 307-345.
  29. Rokhlin, S.I., Hefets, M. and Rosen, M. (1980), "An elastic interface waves guided by thin film between two solids", J. Appl. Phys., 51, 3579-3582. https://doi.org/10.1063/1.328208
  30. Samsam Shariat, B.A. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solid Struct., 43, 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005
  31. Schoenberg, M. (1980), "Elastic wave behaviour across linear slip interfaces", J. Acoust. Soc. Am., 68(5), 1516-1521. https://doi.org/10.1121/1.385077
  32. Sharma, J.N., Kumar, V. and Chand, Dayal (2003), "Reflection of generalized thermoelastic waves from the boundary of a half-space", J. Therm. Stresses, 26, 925-942. https://doi.org/10.1080/01495730306342
  33. Shodja, H.M., Tabatabaei, S.M. and Kamali, H.T. (2006), "A Piezoelectric-inhomogenity system with imperfect interface", Int. J. Eng. Sci., 44, 291-311. https://doi.org/10.1016/j.ijengsci.2005.12.009
  34. Sotiropoulos, D.A. and Achenbach, J.D. (1988), "Ultrasonic reflection by planar distribution of cracks", J. Nondestruct. Eval., 7, 23-129.
  35. Wang, X. and Zhong, Z. (2003), "Three-dimensional solution of smart laminated anisotropic circular cylindrical shellswith imperfect bonding", Int. J. Solid Struct., 40, 5901-5921. https://doi.org/10.1016/S0020-7683(03)00389-5

Cited by

  1. Effect of Two Temperatures and Stiffness on Waves Propagating at the Interface of Two Micropolar Thermoelastic Media vol.88, pp.2, 2015, https://doi.org/10.1007/s10891-015-1220-8
  2. Thermomechanical deformation in porous generalized thermoelastic body with variable material properties vol.34, pp.3, 2010, https://doi.org/10.12989/sem.2010.34.3.285
  3. Reflection and Refraction of Longitudinal Displacement Wave at Interface between Two Micropolar Elastic Solid vol.139-141, pp.1662-8985, 2010, https://doi.org/10.4028/www.scientific.net/AMR.139-141.214
  4. Effect of Thermal Relaxation on Propagation of Longitudinal Displacement Wave vol.146-147, pp.1662-8985, 2010, https://doi.org/10.4028/www.scientific.net/AMR.146-147.314
  5. Frequency Equations of Magneto-Thermoviscoelastic Surface Wave vol.97-101, pp.1662-8985, 2010, https://doi.org/10.4028/www.scientific.net/AMR.97-101.479
  6. Reflection and Refraction of Coupled Transverse and Micro-Rotational Wave at Interface between Two Micropolar Elastic Solid vol.670, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.670.193