Applicability of Spent Mushroom Media as Horticultural Nursery Media

버섯재배 후 탈병배지의 원예용 상토재료 이용성 검토

  • Lee, Chan-Jung (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cheong, Jong-Chun (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Jhune, Chang-Sung (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Seung-Hwan (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 이찬중 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 정종천 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 전창성 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 김승환 (농촌진흥청 국립원예특작과학원 버섯과)
  • Received : 2009.01.15
  • Accepted : 2009.03.13
  • Published : 2009.04.30

Abstract

This study was carried out to investigate applicability of Spent Mushroom Media(SMM) as horticultural nursery media. After the mushroom has been harvested, the SMM contains a lot of organic material, different microorganism and high density of mushroom hypha. The pH, phosphate and exchangeable cation concentrations of SMM of Flammulina velutipes were higher than those of any other treatment. The CEC and $NH_4-N$ were the highest in SMM of bottle-cultivated oyster mushroom (Pleurotus ostreatus). Bacteria and fungi showed the highest density in SMM of Flammulina velutipes. Most dominant bacteria were Microbacterium sp., Rhodococcus sp. and Agrobacterium sp. in SMM of Flammulina velutipes and Bacillus sp., Pseudomonas sp., Curtobacterium sp. and Microbacterium sp. in that of Pleurotus eryngii. The SMM contained high density of mushroom hypha that inhibited germination of seed and growth of young seedlings. Therefore, composting process of the SMM is indispensible to decline of vitality of mushroom hypha. The SMM of Flammulina velutipes with 0~30% vermiculite showed high germination rate in red pepper and chinese cabbage seeds. SMM of Pleurotus eryngii with 20% vermiculite showed 100% germination rate in red pepper seeds, but chinese cabbage seeds nearly failed to germinate with 30% vermiculite. The growth of red pepper was increased according to increasing mixture ratio of vermiculite. Accordingly, we concluded that SMM of Flammulina velutipes contained 0~30% of vermiculite can be used to horticultural growth bed for red pepper.

본 연구는 팽이버섯과 큰느타리버섯 재배 후 탈병 배지를 대상으로 원예용 상토재료로서의 이용가능성을 검토하기 위하여 수행하였다. 탈병배지의 이화학성을 분석한 결과 팽이버섯 탈병배지에서 pH와 암모니아태 질소가 높았고, CEC는 느타리재배 탈병배지에서 높았다. 인산과 양이온 함량은 팽이버섯 탈병배지가 큰느타리 시료에 비해 상대적으로 높았다. 미생물 분포는 팽이버섯 탈병배지에서 Microbacterium, Rhodococcus, Agrobacterium, 큰느타리버섯은 Bacillus, Pseudomonas, Curtobacterium, Microbacterium, Plantibacte속 등이 우점하였다. 버섯재배 탈병배지를 퇴비화한 결과 시판용 상토원료보다 CEC는 낮았으나, 질소, 인산 및 양이온 함량은 오히려 높았다. 팽이와 큰느타리버섯 탈병배지를 퇴비화한 후 질석을 혼합하여 고추와 배추에 대한 발아율을 조사하였다. 팽이버섯 탈병배지는 질석 혼합 비율에 관계없이 고추와 배추의 발아율이 높았다. 그러나 큰느타리 탈병배지와 질석혼용시 질석 20% 이상 혼합시 고추의 발아율이 100%였으나, 10% 혼합의 경우는 발아가 전혀 되지 않았다. 특히 배추의 경우 질석 30%를 혼합하여도 10%의 발아율을 나타냄으로써 큰느타리재배 탈병배지는 배추재배용 상토원료로는 부적당할 것으로 판단되었다. 한편, 팽이버섯 탈병배지는 시판용 상토원료와 혼합할 경우 혼합비율에 관계없이 사용가능하다고 판단되나, 큰느타리 탈병배지의 경우는 시판용 상토원료와 20% 미만의 적은 양을 혼합할 경우 사용이 가능할 것으로 판단된다. 고추 유묘의 생육은 팽이버섯과 큰 느타리 탈병배지 모두 질석 혼합비율이 증가할수록 초장, 생체중 및 근중이 증가하였으며, 특히 큰느타리 탈병배지를 이용한 상토에서 고추 유묘의 생육촉진 효과가 뚜렷하였다.

Keywords

References

  1. Buckerfield, J.C., and K.A. Webster. 2001. Responses to mulch continue: results from five years of field-trials. The Australian Grapegrower and Winemaker, 453:71-78
  2. Buckerfield, J.C., and K.A. Webster. 2002. Organic matter management in vineyards: mulches for soil maintenance. The Australian and New Zealand Grapegrower and Winemaker, 461:26-30
  3. Cheong, J.C., C.S. Jhune, S.H. Kim, K.Y. Jang, J.S. Park, J.C. Na, and M.H. Chun. 2006. Effect of the adding of Flammulina velutipes cultivation media wastes into chicken feed on the meat quality and production cost of broiler. J. Korean Mycolo. 34:2933 https://doi.org/10.4489/KJM.2006.34.1.029
  4. Cheong J.C., C.S. Jhune, C.J. Lee, S.H. Kim, J.G. Kwon, W.I. Kim, and J.B. Kim. 2007. Chemical Characteristics of Raw Materials for Mushroom Substrates and Stable Mushroom Cultivation. Agro-Environment Research, NIAST, RDA 870-887
  5. Gabriels, R., O. Verdonck, and O. Mekers. 1986. Substrate requirement for pot plants in recirculating water culture. Acta Hort. 178:93-99
  6. Jeong, P.G. 1995. Use of vermiculite in agriculture. The Mineralogical Soc. of Kor. 8:23-26
  7. Johnson, J. L. 1994. Similarity analysis of rRNAs. p.683-700 In P. Gerhard, R. G. E. Murray, W. A. Wood, and N. R. Krirg (ed.) Methods for general and molecular bacteriology. American Society for Microbiology. Washington DC, USA
  8. Kim, I.G., and Whang, K.S. 2002. The observation and a quantitative evaluation of viable but non-culturable bacteria in potable groundwater using epifluorescence microscopy. The Korean. Journal of Microbiology. 38:180-185
  9. Kuster, E,. and Williams, S.T. 1966. Selection of media for isolation of streptomycetes. Nature(London) 202:928-929 https://doi.org/10.1038/202928a0
  10. Martin, J.P. 1950. Use of acid. rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69:215-232 https://doi.org/10.1097/00010694-195003000-00006
  11. MFAFF, 2006. Actual yield of industrial product
  12. Nelson, P.V. 1991. Greenhouse operation and management. p. 180. 4th ed. Prentice Hall. Englewood Cliff, N. J
  13. RDA. 2000. Methods for chemical analysis of soil and plant. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea