Orientation Dependent Directed Etching of Aluminum

  • Lee, Dong Nyung (School of Materials Science and Engineering, Seoul National University) ;
  • Seo, Jong Hyun (Department of Materials Science & Engineering, Hankuk Aviation)
  • Received : 2007.04.04
  • Accepted : 2009.06.04
  • Published : 2009.06.01

Abstract

The direct-current electroetching of high purity aluminum in hot aqueous-chloride solution produces a high density of micrometer-wide tunnels whose walls are made up of the {100} planes and penetrate aluminum in the <100> directions at rates of micrometer per second. In the process of the alternating-current pitting of aluminum, cathodic polarization plays an important role in the nucleation and growth of the pits during the subsequent polarization. The direct-current tunnel etching and alternating-current etching of aluminum are basically related to the formation of poorly crystallized or amorphous passive films. If the passive film forms on the wall, a natural misfit exists between the film and the aluminum substrate, which in turn gives rise to stress in both the film and the substrate. Even though the amorphous films do not have directed properties, their stresses are influenced by the substrate orientation. The films on elastically soft substrate are likely to be less stressed and more stable than those on elastically hard substrate. The hardest and softest planes of aluminum are the {111} and {100} planes, respectively. Therefore, the films on the {111} substrates are most likely to be attacked, and those on the {100} substrates are least likely to be attacked. For the tunnel etching, it follows that the tunnel walls tend to consist of the {100} planes. Meanwhile, the tunnel tip, where active corrosion takes place, tend to be made of four closely packed {111} planes in order to minimize the surface energy, which gives rise to the <100> tunnel etching.

Keywords

References

  1. J.-H. Jeong, C.-H. Choi, and D. N. Lee, J. Mater. Sci., 31, 5811 (1996) https://doi.org/10.1007/BF01160833
  2. J. H. Seo, J.-H. Ryu, and D. N. Lee, J. Electrochem. Soc., 150, B433 (2003) https://doi.org/10.1149/1.1596952
  3. D. N. Lee, Mater. Sci. Forum, 408 75 (2002) https://doi.org/10.4028/www.scientific.net/MSF.408-412.75
  4. P. M. Sutton, Phys. Rev., 91, 816 (1953) https://doi.org/10.1103/PhysRev.91.816
  5. D. N. Lee, Thin Solid Films, 434, 183 (2003) https://doi.org/10.1016/S0040-6090(03)00538-8
  6. C.-F. Lin and K. R. Hebert, J. Electrochem. Soc., 137, 3723 (1990) https://doi.org/10.1149/1.2086293
  7. C.-F. Lin and K. R. Hebert, J. Electrochem. Soc., 141, 104 (1994) https://doi.org/10.1149/1.2054667
  8. H. Takahashi, K. Hujiwara, and M. Seo, Corros. Sci., 36, 689 (1994) https://doi.org/10.1016/0010-938X(94)90074-4
  9. J. H. Seo and D. N. Lee, Corros. Sci. Tech., 31, 291 (2002)
  10. J. H. Seo and D. N. Lee, J. Electrochem. Soc., 150, B329 (2003) https://doi.org/10.1149/1.1578479
  11. J. Tousek, Localized Corrosion of Metals, Trans Tech Publications, Switzerland (1985)
  12. M. Yasuda, F. Weinberg, and D. Tromans, J. Electrochem. Soc., 137, 3708 (1990) https://doi.org/10.1149/1.2086291
  13. K. Fukuoka and N. Ohsawa, Sumitomo Light Metal Technical Reports, 35, 90 (1994)
  14. G. M. Treacy and C. B. Breslin, Electrochim. Acta, 43, 1715 (1998) https://doi.org/10.1016/S0013-4686(97)00305-8
  15. K. R. Hebert and R. C. Alkire, J. Electrochem. Soc., 135, 2447 (1988) https://doi.org/10.1149/1.2095356
  16. N. F. Jackson, Electrocomponent Sci. technology, 2, 33 (1975) https://doi.org/10.1155/APEC.2.33
  17. R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, J. Electrochem. Soc., 138, 13 (1984) https://doi.org/10.1149/1.2115495
  18. C. K. Dyer and R. S. Alwitt, J. Electrochem. Soc., 128, 300 (1981) https://doi.org/10.1149/1.2127408
  19. R. S. Alwitt, J. Electrochem. Soc., 118, 1730 (1971) https://doi.org/10.1149/1.2407826
  20. R. K. Hart, Proc. Roy. Soc. London. Ser., A 236, 68 (1956) https://doi.org/10.1098/rspa.1956.0113
  21. R. K. Hart, Trims Faraday Soc., 53, 1020 (1957) https://doi.org/10.1039/tf9575301020
  22. W. Vedder and D. A. Vermile, Electrochim Acta, 65, 567 (1969)
  23. H. Takahashi, Y. L'mehara, and T. Miyamamoto, J. Surf. Fin. Jpn., 38, 67 (1987)