Inhibitory Effect of Dendrobium moniliforme on NO and IL-$1{\beta}$ Production in LPS-stimulated Macrophages

LPS로 자극된 대식세포에서 석곡의 NO 및 IL-$1{\beta}$ 생성 억제 효과

  • Park, Ga-Young (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Bae, Chang-Hwan (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Park, Sun-Young (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Kim, Ji-Hee (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Ko, Woo-Shin (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Kim, Young-Hee (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • 박가영 (부산대학교 자연과학대학 분자생물학과) ;
  • 배창환 (부산대학교 자연과학대학 분자생물학과) ;
  • 박순영 (부산대학교 자연과학대학 분자생물학과) ;
  • 김지희 (부산대학교 자연과학대학 분자생물학과) ;
  • 고우신 ;
  • 김영희 (부산대학교 자연과학대학 분자생물학과)
  • Received : 2009.11.27
  • Accepted : 2009.12.05
  • Published : 2009.12.25

Abstract

석곡은 난초과의 여러해살이풀 Dendrobium moniliforme의 지상부를 건조한 것으로 예로부터 양위생진(養胃生津), 자음제열(滋陰除熱) 등의 효능이 있어 해열, 진통의 작용과 위액분비 촉진, 혈압강하의 작용이 있는 것으로 알려져 있다. 본 연구에서는 석곡의 항염증 작용 기전을 알아보기 위하여 석곡 열수추출물을 대식세포주에 처리하여 NO 및 IL-$1{\beta}$의 생성에 미치는 영향을 조사하였다. LPS로 자극된 대식세포주 RAW264.7 세포에서 석곡은 NO 및 IL-$1{\beta}$ 생성과 iNOS 단백질 발현을 저해하였으며, LPS에 의해서 활성화되는 ERK, p38, JNK 효소의 활성을 현저히 억제하였다. 이 결과들로 보아 석곡의 항염증 작용이 MAPK 활성 저해로 인한 NO 및 IL-$1{\beta}$ 생성의 억제 때문인 것으로 사료된다.

Keywords

References

  1. Chen, YL, Zhang M, Hua YF, He GQ. Studies on polysaccharide alkaloids and minerals from Dendrobium moniliforme (L.) Sw. Zhongguo Zhong Yao Za Zhi 2001;26:709-10.
  2. Zhao, C, Liu Q, Halaweish F, Shao B, Ye Y, Zhao W. Copacamphane, picrotoxane, and alloaromadendrane sesquiterpene glycosides and phenolic glycosides from Dendrobium moniliforme. J Nat Prod 2003;66:1140-3. https://doi.org/10.1021/np0301801
  3. Zhao, W, Ye Q, Dai J, Martin MT, Zhu J. allo-aromadendrane- and picrotoxane-type sesquiterpenes from Dendrobium moniliforme. Planta Med 2003;69:1136-40. https://doi.org/10.1055/s-2003-818005
  4. Lin, TH, Chang SJ, Chen CC, Wang JP, Tsao LT. Two phenanthraquinones from Dendrobium moniliforme. J Nat Prod 2001;64:1084-6. https://doi.org/10.1021/np010016i
  5. Medzhitov, R, Janeway CA,Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997;91:295-8. https://doi.org/10.1016/S0092-8674(00)80412-2
  6. Luscinskas, FW, Gimbrone MA,Jr. Endothelial-dependent mechanisms in chronic inflammatory leukocyte recruitment. Annu Rev Med 1996;47:413-21. https://doi.org/10.1146/annurev.med.47.1.413
  7. Diehl, S, Rincon M. The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol 2002;39:531-6. https://doi.org/10.1016/S0161-5890(02)00210-9
  8. Mahida, YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 2000;6:21-33. https://doi.org/10.1002/ibd.3780060105
  9. Moncada, S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-42.
  10. MacMicking, J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997;15:323-50. https://doi.org/10.1146/annurev.immunol.15.1.323
  11. Southan, GJ, Szabo C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol 1996;51:383-94. https://doi.org/10.1016/0006-2952(95)02099-3
  12. Kim, YH, Ko WS, Ha MS, Lee CH, Choi BT, Kang HS, et al. The production of nitric oxide and TNF-alpha in peritoneal macrophages is inhibited by Dichroa febrifuga Lour. J Ethnopharmacol 2000;69:35-43. https://doi.org/10.1016/S0378-8741(99)00143-9
  13. Schmidt HHHW, Kelm M. Determination of Nitrite and Nitrate by the Griess Reaction. Methods in Nitric Oxide research: John Wiley & Sons Ltd., 1996:491-7.
  14. Xiao, ZY, Zhou WX, Zhang YX, Cheng JP, He JF, Yang RF, et al. Inhibitory effect of linomide on lipopolysaccharide-induced proinflammatory cytokine tumor necrosis factor-alpha production in RAW264.7 macrophages through suppression of NF-kappaB, p38, and JNK activation. Immunol Lett 2007;114:81-5. https://doi.org/10.1016/j.imlet.2007.09.001
  15. Lee, JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 2000;47:185-201. https://doi.org/10.1016/S0162-3109(00)00206-X
  16. Guha, M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal 2001;13:85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  17. Sanchez-Duffhues, G, Calzado MA, de Vinuesa AG, Appendino G, Fiebich BL, Loock U, et al. Denbinobin inhibits nuclear factor-kappaB and induces apoptosis via reactive oxygen species generation in human leukemic cells. Biochem Pharmacol 2009;77:1401-9. https://doi.org/10.1016/j.bcp.2009.01.004
  18. Pelletier, JP, Jovanovic D, Fernandes JC, Manning P, Connor JR, Currie MG, et al. Reduced progression of experimental osteoarthritis in vivo by selective inhibition of inducible nitric oxide synthase. 1998;41:1275-86. https://doi.org/10.1002/1529-0131(199807)41:7<1275::AID-ART19>3.0.CO;2-T
  19. Lohinai, Z, Benedek P, Feher E, Gyorfi A, Rosivall L, Fazekas A, et al. Protective effects of mercaptoethylguanidine, a selective inhibitor of inducible nitric oxide synthase, in ligature-induced periodontitis in the rat. 1998;123:353-60. https://doi.org/10.1038/sj.bjp.0701604
  20. Shin, T, Tanuma N, Kim S, Jin J, Moon C, Kim K, et al. An inhibitor of inducible nitric oxide synthase ameliorates experimental autoimmune myocarditis in Lewis rats. 1998;92:133-8. https://doi.org/10.1016/S0165-5728(98)00194-5
  21. Hua, LL, Liu JS, Brosnan CF, Lee SC. Selective inhibition of human glial inducible nitric oxide synthase by interferon-beta: implications for multiple sclerosis. 1998;43:384-7. https://doi.org/10.1002/ana.410430317
  22. Levy, B, Valtier M, de Chillou C, Bollaert PE, Cane D, Mallie JP. Beneficial effects of L-canavanine, a selective inhibitor of inducible nitric oxide synthase, on lactate metabolism and muscle high energy phosphates during endotoxic shock in rats. 1999;11:98-103. https://doi.org/10.1097/00024382-199902000-00005
  23. Netea, MG, van der Meer JW, van Deuren M, Kullberg BJ. Proinflammatory cytokines and sepsis syndrome: not enough, or too much of a good thing? Trends Immunol 2003;24:254-8. https://doi.org/10.1016/S1471-4906(03)00079-6
  24. Kyriakis, JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 1996;271:24313-6. https://doi.org/10.1074/jbc.271.40.24313
  25. Ciallella, JR, Saporito M, Lund S, Leist M, Hasseldam H, McGann N, et al. CEP-11004, an inhibitor of the SAPK/JNK pathway, reduces TNF-alpha release from lipopolysaccharide-treated cells and mice. Eur J Pharmacol 2005;515:179-87. https://doi.org/10.1016/j.ejphar.2005.04.016