Abstract
Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.
영상정합 기술은 두 개 이상의 영상을 서로 맞추어, 각각의 영상이 가지고 있는 단점을 보완하여, 새로운 정보를 획득하게 하는 기술이다. 본 논문은 의료 영상간의 2D 영상 정합을 통해 환자의 점진적 병세파악에 도움을 주는 것을 목적으로 하고 있다. 서로 다른 시점과 장비로부터 얻어진 CT와 PET/CT영상을 정합하기 위하여 정확한 해부학적 정보를 제공하는 CT영상간의 정합을 먼저 수행하고 이를 통하여 얻어진 기하학적 정합파라미터들을 PET 영상에 적용하여, 독립 CT영상 위에 PET영상을 중첩하였다. 정합작업을 위해 먼저 각각의 CT영상에 대해 전처리 작업을 실시하였고, 영상의 변형은 affine 좌표변환을 이용하였다. 정합할 영상간의 유사도 평가를 위해 mutual information을 이용하였으며, 빠르고 정확한 정합을 위하여 최적화 알고 리듬인 particle swarm optimization 방법을 이용하였다. 이를 통해 실제 환자의 독립 CT와 PET/CT영상을 이용하여 실험하였고, PET/CT의 영상에서 확인할 수 있었던 병소에 대한 해부학적 위치 정보가 영상정합 과정을 통해 독립 CT 영상에서도 동일한 위치에 표시됨을 확인하였다. 제안된 알고리듬은 PET/CT 뿐만 아니라 향후 도입될 SPECT/CT, MRI/PET 등 다중영상기기와 기존의 독립 CT 영상기기와의 정합에도 폭넓게 사용될 것으로 기대된다.