Image Registration for PET/CT and CT Images with Particle Swarm Optimization

Particle Swarm Optimization을 이용한 PET/CT와 CT영상의 정합

  • Lee, Hak-Jae (Radiology Science, Korea University) ;
  • Kim, Yong-Kwon (Radiology Science, Korea University) ;
  • Lee, Ki-Sung (Radiology Science, Korea University) ;
  • Moon, Guk-Hyun (School of Electrical Engineering, Korea University) ;
  • Joo, Sung-Kwan (School of Electrical Engineering, Korea University) ;
  • Kim, Kyeong-Min (Research Institute of Radiological and Medical Science, Korea Institute of Radiological and Medical Sciences) ;
  • Cheon, Gi-Jeong (Research Institute of Radiological and Medical Science, Korea Institute of Radiological and Medical Sciences) ;
  • Choi, Jong-Hak (Radiology Science, Korea University) ;
  • Kim, Chang-Kyun (Radiology Science, Korea University)
  • 이학재 (고려대학교 방사선학과) ;
  • 김용권 (고려대학교 방사선학과) ;
  • 이기성 (고려대학교 방사선학과) ;
  • 문국현 (고려대학교 전기전자전파공학부) ;
  • 주성관 (고려대학교 전기전자전파공학부) ;
  • 김경민 (한국원자력의학원 방사선의학연구소) ;
  • 천기정 (한국원자력의학원 방사선의학연구소) ;
  • 최종학 (고려대학교 방사선학과) ;
  • 김창균 (고려대학교 방사선학과)
  • Published : 2009.06.30

Abstract

Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

영상정합 기술은 두 개 이상의 영상을 서로 맞추어, 각각의 영상이 가지고 있는 단점을 보완하여, 새로운 정보를 획득하게 하는 기술이다. 본 논문은 의료 영상간의 2D 영상 정합을 통해 환자의 점진적 병세파악에 도움을 주는 것을 목적으로 하고 있다. 서로 다른 시점과 장비로부터 얻어진 CT와 PET/CT영상을 정합하기 위하여 정확한 해부학적 정보를 제공하는 CT영상간의 정합을 먼저 수행하고 이를 통하여 얻어진 기하학적 정합파라미터들을 PET 영상에 적용하여, 독립 CT영상 위에 PET영상을 중첩하였다. 정합작업을 위해 먼저 각각의 CT영상에 대해 전처리 작업을 실시하였고, 영상의 변형은 affine 좌표변환을 이용하였다. 정합할 영상간의 유사도 평가를 위해 mutual information을 이용하였으며, 빠르고 정확한 정합을 위하여 최적화 알고 리듬인 particle swarm optimization 방법을 이용하였다. 이를 통해 실제 환자의 독립 CT와 PET/CT영상을 이용하여 실험하였고, PET/CT의 영상에서 확인할 수 있었던 병소에 대한 해부학적 위치 정보가 영상정합 과정을 통해 독립 CT 영상에서도 동일한 위치에 표시됨을 확인하였다. 제안된 알고리듬은 PET/CT 뿐만 아니라 향후 도입될 SPECT/CT, MRI/PET 등 다중영상기기와 기존의 독립 CT 영상기기와의 정합에도 폭넓게 사용될 것으로 기대된다.

Keywords

References

  1. Jan Kybic, M. Unser : Fast Parametric Elastic Image Registration, IEEE Transaction on Image Processing, Vol. 12, No. 11, November 2003
  2. Lisa G.Brown : A Survey of Image Registration Techniques, ACM Computing Surveys, Vol. 24. No. 4, December 1992
  3. Senthil Periaswamy : Medical Image Registration with Partial Data, Medical Image Analysis, No. 10. pp.452-464, 2006
  4. Calvin R. Maurer, Jr. and J. Michael Fitzpatrick : A Review of medical Image Registration, American Association of Neurological Surgeons, 1993, pp.17-44, January 1993
  5. 우상근 : PET/CT 영상 움직임 보정, 대한핵의학회 Nucl Med Mol Imaging, Vol. 42, No. 2, Apr 2008
  6. 은정휘, 권성민, 나종범, 선택적 영역의 상호정보를 이용한 고속 의료 영상 정합, 대한의용생체공학회 추계학술대회, pp.103-106, Seoul, November 2002
  7. James Kennedy and Russell Eberhart Particle Swarm Optimization, in Proc. of the IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp.1942–1948, 1995
  8. Russell Eberhart : A New Optimizer Using Particle Swarm Theory, Micro Machine and Human Science, ’95 Proceeding of the Sixth International Symposium on Page 39-43, Oct. 1995
  9. M.G.H. Omran, A.P. Engelbrecht and A. Salman : Particle Swarm Optimization for Pattern Recognition and Image Processing, Studies in Computational Intelligence 34, 125-151, 2006 https://doi.org/10.1007/978-3-540-34956-3_6
  10. Rafael C. Gonzalez, Richard E. Woods : Digital Image Processing, second edition, Prentice Hall, 91-94, 2001
  11. Petra A. van den Elsen, Evert-Jan D. Pol : Medical Image Matching, - Review with classification, IEEE engineering in medicine and biology, 26-39, March 1993
  12. Derek L G Hill, Philipp G Batchelor, Mark Holden and David J Hawkes : Medical Image Registration, Physics in Medicine and Biology, 46(2001) R1-45 https://doi.org/10.1088/0031-9155/46/3/201
  13. Yaun Y. Tang, Ching Y. Suen : Image Transformation Approach to Nonlinear Shape Restoration, IEEE Transaction on Systems, Man and Cybernetics, Vol. 23, No. 1, January/February 1993
  14. C.E. Shannon, A mathematical theory of communication, Bell system Technical Journal, vol. 27. pp.379-423/623-656, 1948 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  15. Mahua Bhattacharya, Arpita Das : Mutil Resolution Medical Image Registration Using Maximization of Mutual Information and Optimization by Genetic Algorithm, IEEE Nuclear Science Symposium Conference Record, M13-125, 2007
  16. Josien P. W. Pluim, J.B. Antoine Maintz and Max A. Viergever : Mutual information based registration of medical images : a survey, IEEE Transaction on Medical Imaging, Vol. 22, 986-1004, Aug. 2003 https://doi.org/10.1109/TMI.2003.815867