DOI QR코드

DOI QR Code

Dynamic Analysis of Soil-Pile-Structure Interaction Considering a Complex Soil Profile

복잡한 지반층을 고려한 지반-말뚝-구조물의 상호작용 동해석

  • 박장호 (아주대학교 환경건설교통공학부) ;
  • 박재균 (단국대학교 토목환경공학과)
  • Published : 2009.06.30

Abstract

The precise analysis of soil-pile-structure interaction requires a proper description of soil layer, pile, and structure. In commonly used finite element simulations, mesh boundaries should match the material discontinuity line. However, in practice, the geometry of soil profiles and piles may be so complex that mesh alignment becomes a wasteful and difficult task. To overcome these difficulties, a different integration method is adopted in this paper, which enables easy integration over a regular element with material discontinuity regardless of the location of the discontinuity line. By applying this integration method, the mesh can be generated rapidly and in a highly structured manner, leading to a very regular stiffness matrix. The influence of the shape of the soil profile and piles on the response is examined, and the validity of the proposed soil-pile structure interaction analysis method is demonstrated through several examples. It is seen that the proposed analysis method can be easily used on soil-pile-structure interaction problems with complex interfaces between materials to produce reliable results regardless of the material discontinuity line.

지반-말뚝-구조의 상호작용을 정밀하게 해석하기 위해서는 토층, 말뚝 그리고 구조물의 적절한 묘사가 필요하다. 일반적으로 사용하는 유한요소해석의 경우에는 지반이나 구조물의 물성이 바뀌는 경계를 따라서 요소의 경계가 정해지게 된다. 그러나 실제로는 토층 단면과 말뚝의 형상이 매우 복잡하여 요소의 배열이 매우 어려운 작업이 될 수 있다. 이 어려움을 해결하기 위하여, 이 논문에서는 불연속선의 위치에 관계없이 규칙적인 요소를 사용하여 쉽게 적분을 가능하게 하는 다른 적분 방법을 채택하였다. 이 방법을 적용함으로 써 요소는 매우 빠르고 규칙적인 강성 매트릭스를 만든다. 구조물 응답에 대한 토층과 말뚝의 영향을 조사하였고, 예를 통하여 본 방법의 유효성을 보였다. 탄성 말뚝의 사용으로 20% 대의 가속도 감소 효과를 얻었고 지반 층의 모양에 따라 그 영향이 변하는 것을 확인하였다.

Keywords

References

  1. Kitiyodom, P., and Matsumoto, T., “A simplified analysis method for piled raft foundations in non-homogeneous soils,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 27, 85-109, 2003 https://doi.org/10.1002/nag.264
  2. Luco, J.E., Linear soil-structure interaction, Lawrence Livermore National Lab, UCRL-15272, 1980
  3. Park, S.H. and Antin, N., “A discontinuous Galerkin method for seismic soil-structure interaction analysis in time domain,” Earthquake Engineering and Structural Dynamics, Vol. 33, 285-293, 2004 https://doi.org/10.1002/eqe.353
  4. Wang, S., “Coupled boundary and finite elements for dynamic structure-foundation-soil interaction,” Computational Structures, Vol. 44, 807-812, 1992 https://doi.org/10.1016/0045-7949(92)90465-C
  5. Wang, G., Chen, L., and Song, C., “Finite-infinite element for dynamic analysis of axisymmetrically saturated composite foundations,” International Journal for Numerical Methods in Engineering, Vol. 67, 916-932, 2006 https://doi.org/10.1002/nme.1654
  6. Wolf, J.P., Dynamic soil-structure-interaction, Prentice-Hall Inc, 1985
  7. Yang, Z. and Jeremie, B., “Numerical study of group effects for pile groups in,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 27, 1255-1276, 2003 https://doi.org/10.1002/nag.321
  8. Zohdi, T.I. and Meletis, E.I., “Calculation of hydrogen buildup in the neighborhood of intergranular cracks,” Journal of the Mechanical Behavior of Materials, Vol. 9, 57-71, 1998
  9. Cook, R.D., Malkus, D.S., and Plesha, M.E., Concepts and application of finite element method, 4th ed., John Wiley & Sons Inc, 2001
  10. Park, J.H., Park, J., Park, K.S. and Ok, S.Y., “Analysis of soil-structure interaction considering complicated soil profile,” Lecture Notes in Computer Science, 4310, 652-659, 2007 https://doi.org/10.1007/978-3-540-70942-8_79
  11. Wolf, J.P., Soil-structure interaction analysis in time domain, Prentice-Hall Inc, 1988
  12. Hayashi, Y., Tamura, K., Mora, M., and Takahashi, I., “Simulation analysis of buildings damaged in the 1995 Kobe, Japan, earthquake considering soil-structure interaction,” Earthquake Engineering and Structural Dynamics, Vol. 28, 371-391, 1999 https://doi.org/10.1002/(SICI)1096-9845(199904)28:4<371::AID-EQE822>3.0.CO;2-N
  13. Zhang, Y., Yang, Z., Bielak, J., Contel, J.P. and Elgamal, A., “Treatment of seismic input and boundary conditions in nonlinear seismic analysis of a bridge ground system,” 16th ASCE Engineering Mechanics Conference, 2003
  14. Lysmer, J. and Kuhlemeyer, R.L., “Finite dynamic model for infinite media,” Journal of Engineering Mechanics, ASCE, 95, 859-877, 1969
  15. Ministry of Construction & Transportation (MOCT), Korean highway bridge design specifications, 2005
  16. Lee, H.S., Lee, J.J., and Jung, D.W., “Analytical Simulation of the Seismic Response of a High-Rise RC Building Model,” Journal of the Earthquake Engineering Society of Korea, Vol. 12, No. 5, 1-10, 2008 https://doi.org/10.5000/EESK.2008.12.5.001