DEA에서 투입.산출 요소 선택 방법

A Method for Selection of Input-Output Factors in DEA

  • 임성묵 (고려대학교 경상대학 경영학부)
  • Lim, Sung-Mook (Division of Business Administration, College of Business and Economics, Korea University)
  • 투고 : 2008.02.12
  • 심사 : 2008.12.03
  • 발행 : 2009.03.01

초록

We propose a method for selection of input-output factors in DEA. It is designed to select better combinations of input-output factors that are well suited for evaluating substantial performance of DMUs. Several selected DEA models with different input-output factors combinations are evaluated, and the relationship between the computed efficiency scores and a single performance criterion of DMUs is investigated using decision tree. Based on the results of decision tree analysis, a relatively better DEA model can be chosen, which is expected to well represent the true performance of DMUs. We illustrate the effectiveness of the proposed method by applying it to the efficiency evaluation of 101 listed companies in steel and metal industry.

키워드

참고문헌

  1. Andersen, P. and Petersen, N. C. (1993), A procedure for ranking efficient unitsin data envelopment analysis,Management Science, 39(10), 1261-1264 https://doi.org/10.1287/mnsc.39.10.1261
  2. Bala, J. (1996), Using Learning to Facilitate the Evolution of Features for Recognizing Visual Concepts, EvolutionaryComputation, 4(3), 297-312 https://doi.org/10.1162/evco.1996.4.3.297
  3. Banker, R.D. andMorey, R. C. (1986), TheUse of Categorical Variables inData Envelopment Analysis,Management Science, 32(12), 1613-1627 https://doi.org/10.1287/mnsc.32.12.1613
  4. Banker, R., Charnes, A., andCooper,W.W. (1984), SomeModels for Estimating Technical and Scale Inefficiencies inData EnvelopmentAnalysis,Management Science, 30(9), 1078-1092 https://doi.org/10.1287/mnsc.30.9.1078
  5. Boussofiane, A.,Dyson, R.G., and Thanassoulis, E. (1991),AppliedData Envelopment Analysis, European Journal of Operational Research, 52(1), 1-15 https://doi.org/10.1016/0377-2217(91)90331-O
  6. Breiman, L., Friedman, J.H.,Olshen, R.A., and Stone, C.G. (1984),Classification and Regression Trees, Chapman & Hall, New York
  7. Chang, H. H. (1998), Determinants of Hospital Efficiency : the Case of Central Government-owned Hospitals in Taiwan, OMEGA International Journal of Management Science, 26(2), 307-317 https://doi.org/10.1016/S0305-0483(98)00014-0
  8. Charnes, A., Cooper, W. W., Golany, B., Seiford, L., and Stutz, J. (1985),Foundations of Data Envelopment Analysis for Pareto-Koopmans EfficientEmpirical Production Functions, Journal of Econometrics, 30(1-2), 91-107 https://doi.org/10.1016/0304-4076(85)90133-2
  9. Charnes, A., Cooper,W.W., Seiford, L., and Stutz, J. (1982), A Multiplicative Model for Efficiency Analysis,Socio-EconomicPlanningSciences, 16(5), 213-224 https://doi.org/10.1016/0038-0121(82)90029-5
  10. Charnes, A., Cooper,W.W., and Rhodes, E. (1978),Measuring the Efficiency of Decision Making Units, European Journal of Operational Research, 2(6), 429-444 https://doi.org/10.1016/0377-2217(78)90138-8
  11. Chen, Y. L.,Hsu, C. L., and Chou, S. C. (2003), Constructing aMulti-valued and Multi-labeledDecision Tree,Expert SystemswithApplications, 25(2), 199-209 https://doi.org/10.1016/S0957-4174(03)00047-2
  12. Chou, P. A. (1991),Optimal Partitioning for Classification and Regression Trees, IEEE Transactions onPatternAnalysis andMachineIntelligence, 13(4), 340-354 https://doi.org/10.1109/34.88569
  13. Cooper,W.W., Seiford, L. M., and Tone, K. (2000),Data EnvelopmentAnalysis: A ComprehensiveText withModels, Applications, References and DEA-solver Software, Kluwer academic publishers, Boston
  14. Donthu, N., Hershberger, E. K., and Osmonbekov, T. (2005), Benchmarking Marketing ProductivieyUsingData EnvelopmentAnalysis, Journal ofBusiness Research, 58(11), 1474-1482 https://doi.org/10.1016/j.jbusres.2004.05.007
  15. Farrell, M. J. (1957), The Measurement of Productive Efficiency, Journal of the Royal Statistical Society, SeriesA (General) , 120(3), 253-290 https://doi.org/10.2307/2343100
  16. Golany, B. and Roll, Y. (1989), An Application Procedure for DEA, OMEGA International Journal ofManagement Science, 17(3), 237-250 https://doi.org/10.1016/0305-0483(89)90029-7
  17. Grosskopf, S. andMoutray, C. (2001), Evaluating Performance in Chicago Public High Schools in theWake of Decentralization, Economics of EducationReview, 20(1), 1-14 https://doi.org/10.1016/S0272-7757(99)00065-5
  18. Hunt, K. J. (1993), Classification by Induction: Application to Modeling and Control ofNon-linearDynamical Systems, Intelligent SystemsEngineering, 2(4), 231-245 https://doi.org/10.1049/ise.1993.0020
  19. Kass,G. V. (1980), An Exploratory Technique for Investigating LargeQuantities of Categorical Data,Applied Statistics, 29(2), 119-127 https://doi.org/10.2307/2986296
  20. Koopmans, T. C., ed. (1951),ActivityAnalysis of ProductionandAllocation,Wiley,New York
  21. Lovell, C. A. K. and Pastor, J. T. (1999), Radial DEAModels without Inputs orwithout Output, European Journal of Operational Research, 118(1), 46-51 https://doi.org/10.1016/S0377-2217(98)00338-5
  22. Luo,X. (2003), Evaluating the Profitability andMarketability Efficiency of Large Banks-an Application of Data Envelopment Analysis, Journal of Business Research, 56(8), 627-635 https://doi.org/10.1016/S0148-2963(01)00293-4
  23. Mcmullen, P. R. and Frazier, G. V. (1998), Using Simulation andData Envelopment Analysis to Compare Assembly Line Balancing Solutions, Journal of ProductivityAnalysis, 11(2), 149-168 https://doi.org/10.1023/A:1007732016717
  24. Min, J-H. and Jeong, C-W. (2006), Nonparametric Approach to Bankruptcy Prediction : Developing Cross Peeling Technique Integrating DEA andNegative DEA, KoreanManagementReview, 35(4), 1157-1180
  25. Min, J-H. andKim, J-H. (1998),ASelection Process of Input andOutput Factors Using Partial Efficiency in DEA, Journal of theKoreanOperations Research and Management ScienceSociety, 23(3), 75-90
  26. Pareto, V. (1927), Manuel d'economie politique, deuxieme edition, Appendix, pp.617 ff., Alfred Bonnet, ed., Marcel Giard, Paris
  27. Quinlan, J. R. (1993),C4.5 :Programs formachinelearning,MorganKaufmann, SanMateo
  28. Ripley, B.D. (1996),PatternRecognitionandNeuralNetworks, CambridgeUniversityPress, New York
  29. Roll, Y. andGolany, B. (1989),AlternateMethods of Treating FactorWeights in DEA,OMEGA International Journal ofManagement Science, 21(1), 99-109 https://doi.org/10.1016/0305-0483(93)90042-J
  30. Sengupta, J. K. (1995),Dynamics of Data Envelopment Analysis : Theory of Systems Efficiency, Kluwer Academic Publishers, Boston
  31. Seol,H., Choi, J., Park,G., and Park, Y. (2007),AFramework for Benchmarking Service Process Using Data Envelopment Analysis and Decision Tree, Expert SystemswithApplications, 32(2), 432-440 https://doi.org/10.1016/j.eswa.2005.12.012
  32. Shafer, S.M., and Byrd, T. A. (2000), AFramework forMeasuring the Efficiency of Organizational Investments in Information Technology Using Data EnvelopmentAnalysis,OMEGAInternational Journal ofManagementScience, 28(2), 125-141 https://doi.org/10.1016/S0305-0483(99)00039-0
  33. Sinuany-Stern, Z., Mehrez, A., and Barboy, A. (1994), Academic Departments Efficiency via DEA, Computers andOperations Research, 21(5), 543-556 https://doi.org/10.1016/0305-0548(94)90103-1
  34. Sohn, S. Y. andMoon, T.H. (2004),Decision Tree Based onData Envelopment Analysis for Effective Technology Commercialization, Expert Systems with Applications, 26(2), 279-284 https://doi.org/10.1016/j.eswa.2003.09.011
  35. Sueyoshi, T., Ohnishi, K., and Kinase, Y. (1999), A Benchmark Approach for Baseball Evaluation,EuropeanJournal ofOperational Research, 115(3), 429-448 https://doi.org/10.1016/S0377-2217(98)00126-X
  36. Talluri, S. (2000), Data Envelopment Analysis :Models and Extensions,Decision Line, 31, 8-11
  37. Tofallis, C. (1996), Improving Discernment in DEA Using Profiling, OMEGA International Journal ofManagement Science, 24(3), 361-364 https://doi.org/10.1016/0305-0483(95)00065-8