참고문헌
- Baek, J. G., Kim, C. O., and Kim, S. S. (2002), Online learing of the cause-and-effect knowledge of a manufacturing process, International Journal of Production Research, 40(14), 3275-3290 https://doi.org/10.1080/00207540210146921
- Cherry, G. and Qin, S. J. (2006), Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis, IEEE Transactions on Semiconductor Manufacturing, 19(2), 159-172 https://doi.org/10.1109/TSM.2006.873524
- Choi, J. Y., Ko, J. M., Kim, C. O., Kang, Y. S., and Lee, S. J. (2007), Process start/end event detection and dynamic time warping algorithms for runby-run process fault detection, In Proceedings of International Symposium on Semiconductor Manufacturing, 1-4 https://doi.org/10.1109/ISSM.2007.4446846
- Dunia, R., Qin, S. J., Edgar, T. F., and McAvoy, T. J. (1996), Identification of faulty sensors using principal component analysis, AIChE Journal, 42(10), 2797-2812 https://doi.org/10.1002/aic.690421011
- Fayyad, U. M. and Irani, K. B. (1993), Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning, In Proceedings of the 13th International Joint conference on Artificial Intelligence, 1022-1027
- Goodlin, B. E., Boning, D. S., Sawin, H. H., and Wise, B. M. (2003), imultaneous Fault Detection and Classification for Semiconductor Manufacturing Tools, Journal of Electrochemical Society, 150(12), 778-784 https://doi.org/10.1149/1.1623772
- Guo, H.-F., Spanos, C. J., and Miller, A. J. (1991), Real time statistical process control for plasma etching, In Proceedings of IEEE/SEMI International Semiconductor Manufacturing Science Symposium, 113-118 https://doi.org/10.1109/ISMSS.1991.146278
- Guyon, I. and Elisseeff, A. (2003), An introduction to variable and feature selection, Journal of Machine Learning Research, 3, 1157-1182 https://doi.org/10.1162/153244303322753616
- Irani, K. B., Cheng, J., Fayyad, U. M., and Qian, Z. (1993), Applying machine learning to semiconductor manufacturing, IEEE Intelligent Systems and Their Applications, 8(1), 41-47 https://doi.org/10.1109/64.193054
- Kohavi, R. and John, G. (1997), Wrapper for feature subset selection, Artificial Intelligence, 19(1-2), 273-324
- Lada, E. E., Lu, J-C., and Wilson, J. R. (2002), A Wavelet-Based Procedure for Process Fault, IEEE Transactions on Semiconductor Manufacturing, 15(1), 79-90 https://doi.org/10.1109/66.983447
- Quinlan, J. R. (1986), Induction of decision trees, Machine Learning, 1(1), 81-106
- Salvador, S., Chan, P., Brodie, J. (2004), Learning States and Rules for Time Series Anomaly Detection. In Proceedings of the 17th International Florida Artificial Intelligence Research Symposium