DOI QR코드

DOI QR Code

Regulation of Tumor Immune Surveillance and Tumor Immune Subversion by TGF-$\beta$

  • Park, Hae-Young (Laboratory of Immunology, Lee Gil-Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science) ;
  • Wakefield, Lalage M (Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health) ;
  • Mamura, Mizuko (Laboratory of Immunology, Lee Gil-Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science)
  • 투고 : 2009.06.20
  • 심사 : 2009.06.23
  • 발행 : 2009.08.31

초록

Transforming growth factor-$\beta$ (TGF-$\beta$) is a highly pleiotropic cytokine playing pivotal roles in immune regulation. TGF-$\beta$ facilitates tumor cell survival and metastasis by targeting multiple cellular components. Focusing on its immunosuppressive functions, TGF-$\beta$ antagonists have been employed for cancer treatment to enhance tumor immunity. TGF-$\beta$ antagonists exert anti-tumor effects through #1 activating effector cells such as NK cells and cytotoxic $CD8^+$ Tcells (CTLs), #2 inhibiting regulatory/suppressor cell populations, #3 making tumor cells visible to immune cells, #4 inhibiting the production of tumor growth factors. This review focuses on the effect of TGF-$\beta$ on T cells, which are differentiated into effector T cells or newly identified tumor-supporting T cells.

키워드

참고문헌

  1. Miyazono K, Kusanagi K, Inoue H: Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol 187;265-276, 2001 https://doi.org/10.1002/jcp.1080
  2. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24;99-146, 2006 https://doi.org/10.1146/annurev.immunol.24.021605.090737
  3. Roberts AB, Wakefield LM: The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 100;8621-8623, 2003 https://doi.org/10.1073/pnas.1633291100
  4. Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM: Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109;1607-1615, 2002 https://doi.org/10.1172/JCI200215333
  5. Ge R, Rajeev V, Ray P, Lattime E, Rittling S, Medicherla S, Protter A, Murphy A, Chakravarty J, Dugar S, Schreiner G, Barnard N, Reiss M: Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo. Clin Cancer Res 12;4315-4330, 2006 https://doi.org/10.1158/1078-0432.CCR-06-0162
  6. Wrzesinski SH, Wan YY, Flavell RA: Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13;5262-5270, 2007 https://doi.org/10.1158/1078-0432.CCR-07-1157
  7. Denoix PF: Enquete permanent dans les centres anticancereaux. Bull Inst Nat Hyg 1;70-75, 1946
  8. Chen F, Fujinaga T, Sato K, Sonobe M, Shoji T, Sakai H, Miyahara R, Bando T, Okubo K, Hirata T, Toi M, Date H: Clinical features of surgical resection for pulmonary metastasis from breast cancer. Eur J Surg Oncol 35;393-397, 2009 https://doi.org/10.1016/j.ejso.2008.05.005
  9. Humphrey LJ, Singla O, Volenec FJ: Immunologic responsiveness of the breast cancer patient. Cancer 46;893-898, 1980 https://doi.org/10.1002/1097-0142(19800815)46:4+<893::AID-CNCR2820461307>3.0.CO;2-V
  10. Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L: Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202;919-929, 2005 https://doi.org/10.1084/jem.20050463
  11. Alleva DG, Burger CJ, Elgert KD: Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J Immunol 153;1674-1686, 1994
  12. Bierie B, Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6;506-520, 2006 https://doi.org/10.1038/nrc1926
  13. Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature 454;436-444, 2008 https://doi.org/10.1038/nature07205
  14. Yang L, Moses HL: Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 68;9107-9111, 2008 https://doi.org/10.1158/0008-5472.CAN-08-2556
  15. Geiser AG, Letterio JJ, Kulkarni AB, Karlsson S, Roberts AB, Sporn MB: Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc Natl Acad Sci U S A 90;9944-9948, 1993 https://doi.org/10.1073/pnas.90.21.9944
  16. Ljunggren HG, K\ddot{a}rre K: In search of the ‘missing self: MHC molecules and NK cell recognition. Immunol Today 11; 237-244, 1990 https://doi.org/10.1016/0167-5699(90)90097-S
  17. Zwirner NW, Fuertes MB, Girart MV, Domaica CI, Rossi LE: Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev 18;159-170, 2007 https://doi.org/10.1016/j.cytogfr.2007.01.013
  18. Lee JC, Lee KM, Kim DW, Heo DS: Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172;7335-7340, 2004 https://doi.org/10.4049/jimmunol.172.12.7335
  19. Nam JS, Terabe M, Mamura M, Kang MJ, Chae H, Stuelten C, Kohn E, Tang B, Sabzevari H, Anver MR, Lawrence S, Danielpour D, Lonning S, Berzofsky JA, Wakefield LM: An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res 68;3835-3843, 2008 https://doi.org/10.1158/0008-5472.CAN-08-0215
  20. Thomas DA, Massagu\acute{e} J: TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8;369-380, 2005 https://doi.org/10.1016/j.ccr.2005.10.012
  21. Yamaguchi T, Sakaguchi S: Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 16;115-123, 2006 https://doi.org/10.1016/j.semcancer.2005.11.005
  22. Kitamura T, Kometani K, Hashida H, Matsunaga A, Miyoshi H, Hosogi H, Aoki M, Oshima M, Hattori M, Takabayashi A, Minato N, Taketo MM: SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39;467-475, 2007 https://doi.org/10.1038/ng1997
  23. Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang YA, Laurence A, Michalowska A, Mamura M, Lonning S, Berzofsky JA, Wakefield LM: Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res 68;3915-3923, 2008 https://doi.org/10.1158/0008-5472.CAN-08-0206
  24. Kapp JA, Bucy RP: CD8+ suppressor T cells resurrected. Hum Immunol 69;715-720, 2008 https://doi.org/10.1016/j.humimm.2008.07.018
  25. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M,Homma I, Sekikawa K, Asano M, Iwakura Y: Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17;375-387, 2002
  26. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B: TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24;179-189, 2006 https://doi.org/10.1016/j.immuni.2006.01.001
  27. Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF: Generation and regulation of human CD4+ IL-17- producing T cells in ovarian cancer. Proc Natl Acad Sci U S A 105;15505-15510, 2008 https://doi.org/10.1073/pnas.0710686105
  28. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze MT: Interleukin-17 promotes angiogenesis and tumor growth. Blood 101;2620-2627, 2003 https://doi.org/10.1182/blood-2002-05-1461
  29. Kryczek I, Wei S, Szeliga W, Vatan L, Zou W: Endogenous IL-17 contributes to reduced tumor growth and metastasis.Blood 114;357-359, 2009 https://doi.org/10.1182/blood-2008-09-177360
  30. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H: IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 206;1457-1464, 2009 https://doi.org/10.1084/jem.20090207
  31. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, McClanahan TK, O'Shea JJ, Cua DJ: The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10;314-324, 2009 https://doi.org/10.1038/ni.1698
  32. Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T, Drake C, Pardoll D, Yu H: Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15;114-123, 2009 https://doi.org/10.1016/j.ccr.2008.12.018
  33. Martin-Orozco N, Dong C: The IL-17/IL-23 axis of inflammation in cancer: friend or foe? Curr Opin Investig Drugs 10;543-549, 2009

피인용 문헌

  1. A possible mechanism of impaired NK cytotoxicity in cancer patients: Down-regulation of DAP10 by TGF-β1 vol.97, pp.3, 2011, https://doi.org/10.1177/030089161109700316
  2. Human cytomegalovirus latency alters the cellular secretome, inducing cluster of differentiation (CD)4+ T-cell migration and suppression of effector function vol.109, pp.36, 2012, https://doi.org/10.1073/pnas.1204836109
  3. An Autocrine Loop between TGF-β1 and the Transcription Factor Brachyury Controls the Transition of Human Carcinoma Cells into a Mesenchymal Phenotype vol.12, pp.9, 2009, https://doi.org/10.1158/1535-7163.mct-12-1007
  4. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/654594
  5. Direct Interaction of CD40 on Tumor Cells with CD40L on T Cells Increases the Proliferation of Tumor Cells by Enhancing TGF-β Production and Th17 Differentiation vol.10, pp.5, 2009, https://doi.org/10.1371/journal.pone.0125742
  6. Transforming Growth Factor-Beta1 and Myeloid-Derived Suppressor Cells Interplay in Cancer vol.6, pp.None, 2009, https://doi.org/10.2174/1876401001706010001
  7. Combined Inhibition of TGF-β Signaling and the PD-L1 Immune Checkpoint Is Differentially Effective in Tumor Models vol.8, pp.4, 2009, https://doi.org/10.3390/cells8040320
  8. Transforming growth factor β signaling pathway: A promising therapeutic target for cancer vol.235, pp.3, 2009, https://doi.org/10.1002/jcp.29108
  9. Transcutaneous Vagal Nerve Stimulation Alone or in Combination With Radiotherapy Stimulates Lung Tumor Infiltrating Lymphocytes But Fails to Suppress Tumor Growth vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.772555
  10. Correlation between Oxidative Stress and Transforming Growth Factor-Beta in Cancers vol.22, pp.24, 2009, https://doi.org/10.3390/ijms222413181