DOI QR코드

DOI QR Code

Population Genetic Structure of Octopus minor Sasaki from Korea and China Based on a Partial Sequencing of Mitochondrial 16S rRNA

미토콘드리아 16S rRNA 염기서열에 의한 한국, 중국 낙지의 유전자 집단 분석

  • Kim, Joo-Il (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Oh, Taeg-Yun (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Seo, Young-Il (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Cho, Eun-Seob (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute)
  • 김주일 (국립수산과학원 남해수산연구소) ;
  • 오택윤 (국립수산과학원 남해수산연구소) ;
  • 서영일 (국립수산과학원 남해수산연구소) ;
  • 조은섭 (국립수산과학원 남해수산연구소)
  • Published : 2009.06.30

Abstract

We determined a portion of mitochondrial 16S rRNA gene sequences (416 bp) to investigate the genetic structure of the octopus (Octopus minor Ssaki) population in Korea and China. Samples were obtained from Korea (Yeosu, Namhae, Jindo, Muan, Geomundo and Seosan) and China (Sandong) during the period of August 2006 to September 2007. Sequence analyses of 28 individual specimens collected from 7 localities revealed 11 haplotypes, ranging in a sequence divergence of 0.2% - 1.2%. Phylogenetic analyses using PHYLIP and networks subdivided the octopus into two clades (termed clade A and B) and the nucleotide divergence between them was 0.4%. This haplotype subdivision was in accordance with geographic separation: one at Yeosu, Namhae, Muan and Jindo, and the other at Seosan, Geomundo and Sandong. On the basis of hierarchial genetic analysis, genetic distance between localities in Korea and China were also found, but a significant population differentiation was not shown in this study (p>0.05). Consequently, most of the octopus populations in Korea had considerable distribution due to the mitochondrial gene flow that resulted in a formation of a genetically homogenous structure, whereas some of the Korean and Chinese populations had different genetic structures. Gene flow among populations may be restricted due to impassable geographic barriers that promote genetic differentiation.

본 연구는 2006년 8월부터 2007년 9월까지 여수, 남해, 진도, 무안, 거문도, 서산 및 중국의 산동에서 포획한 낙지 유전자 집단을 분석하기 위하여 미토콘드리아 16S rRNA 염기서열로 조사했다. 유전자 분석은 총 28 개체로부터 11개의 haplotype이 발견되었다. 유전자 분화율은 0.2-1.2% 범위로 나타났다. Haplotype에 대한 PHYLIP 및 network 조사에 따르면 낙지는 두개의 clade (clade AIclade B)로 나뉘어지며, clade 사이의 분화율은 0.4%로 나타났다. 지역적 거리에 따라 haplotype이 다음과 같이 분화되었다. 하나는 여수, 남해, 무안, 진도 haplotype과 다른 하나는 서산, 거문도, 산동 haplotype으로 나뉘어졌다. 계충구조 분석에서도 한국 낙지집단 및 중국과의 유전적 차이를 볼 수 있으나, 현저한 지역적 차이는 나타나지 않았다. 따라서 한국연안에 서식하고 있는 일부 낙지집단은 gene flow에 의해서 유전적 동질성을 나타낼 수 있지만, 한국집단 간 뿐만 아니라 중국집단과의 유전적 분화는 지역적 거리 및 장벽으로 인하여 제한적인 gene flow로 설명될 수 있다.

Keywords

References

  1. Avise, J. C. 1989. Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43, 1192-1208 https://doi.org/10.2307/2409356
  2. Avise, J. C. 1994. pp. 511, Molecular markers, natural history, and evolution. Chapman and Hall. New York
  3. Avise, J. C., J. Anold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb, and N. C. Saunders. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18, 489-522
  4. Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491
  5. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) ver. 3.5c. Department of Genetics, University of Washington, Seattle
  6. Grant, W. S., A. M. Clark, and B. W. Bowen. 1998. Why restriction fragment length polymorphism analysis of mitochondrial DNA failed to resolve sardine (Sardinops) biogeography: insights from mitochondrial DNA cytochrome b sequences. Can. J. Fish Aqua. Sci. 55, 2539-2547 https://doi.org/10.1139/cjfas-55-12-2539
  7. Harley, E. H., D. P. Ohland, and P. B. Best. 1995. Systematics of Cetaceans using restriction site mappling of mitochondrial DNA. Mol. Phylo. Evol. 4, 10-19 https://doi.org/10.1006/mpev.1995.1002
  8. Hernadez-Garcia, V., J. L. Hernadez-Lopez, and J. J. Castro-Hdez. 2002. On the reproduction of Octopus vulgris off the coast of the Canary Islands. Fish Res. 57, 197-203 https://doi.org/10.1016/S0165-7836(01)00341-1
  9. Holsinger, K. E. and R. J. Mason-Gamer. 1996. Hierarchical analysis of nucleotide diversity in geographically structured populations. Genetics 142, 629-639
  10. Inoue, J. G., M. Masaki, K. Tsukamoto, and M. Nishida. 2000. Complete mitochondrial DNA sequence of the Japanese sardine Sardinops melanostictus. Fish Sci. 66, 924-932
  11. Jung, J. M. and D. S. Kim. 2001. Influence of sea condition on catch fluctuation of long line for common octopus, Octopus variddilis in the coastal waters of Yeosu. Bull. Kor. Soc. Fish Tech. 37, 321-325
  12. Kim, J. I., T. Y. Oh, W. S. Yang, and E. S. Cho. 2008. Development of molecular marker to distinguish Octopus minor Sasaki caught in Korea and that in China. J. Life Sci. 18, 284-286
  13. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 116, 111-120
  14. McQuaid, C. D. 1994. Feeding behaviour and selection of bivalve prey by Octopus vulgaris Cuvier. J. Exp. Mar. Biol. Ecol. 177, 187-202 https://doi.org/10.1016/0022-0981(94)90236-4
  15. Nei, M. 1987. pp. 512, Molecular Evolutionary Genetics. Columbia Univ. Press, New York, NY
  16. Quetglas, A., M. Gonzalez, and I. Franco. 2005. Biology of the upper-slope cephalopod Octopus salutii from the western Mediterranean Sea. Mar. Biol. 146, 1131-1138 https://doi.org/10.1007/s00227-004-1522-4
  17. Quetglas, A., M. Gonzalez, A. Carbonell, and P. Sanchez. 2001. Biology of the deep-sea octopus Bathypolypus sponsalis (Cephalopoda: Octopodidae) from the western Mediterranean Sea. Mar. Biol. 138, 785-792 https://doi.org/10.1007/s002270000495
  18. Reynolds, J., B. S. Weir, and C. C. Cockerham. 1983. Estimation for the coancestry coefficient: basis for a short-term genetic distance. Genetics 105, 767-779
  19. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425 https://doi.org/10.1093/molbev/msl072
  20. Schneider, S., J. M. Kueffer, D. Roessli, and L. Excoffier. 1996. Arlequin: a software package for population genetics. Genetics and Biometry Lab., Department of Anthropology, University of Geneva
  21. Smale, M. J. and P. R. Buchan. 1981. Biology of Octopus vulgaris off the East coast of South Africa. Mar. Biol. 65, 1-12 https://doi.org/10.1007/BF00397061
  22. Smith, C. D. 2003. Diet of Octopus vulgaris in False bay, South Africa. Mar. Biol. 143, 1127-1133 https://doi.org/10.1007/s00227-003-1144-2
  23. Sweijd, N., A. Lopata, R. Bowie, T. Marinaki, P. Cook, and E. Harley. 1998. A PCR technique for forensic species level identification of abalone tissue. J. Shell. Res. 17, 889-896
  24. Thomson, J. D., D. G. Higgins, and T. J. Gibson. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalities and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673