DOI QR코드

DOI QR Code

Star Formation Rate and AGN in Barred Galaxies

막대은하의 별탄생율과 활동성 은하핵

  • 방준 (한국과학영재학교) ;
  • 안홍배 (부산대학교 과학교육학부)
  • Published : 2009.02.28

Abstract

We investigate the dependence of star formation rate and Active Galaxy Nuclei (AGN) frequency on the bar properties, especially the bar strength, using SDSS DR6. To better represent the bar strength, we divided the bars into 6 classes according to their length and axial ratios. There seems to be a fairly good correlation between the star formation rate derived from $H{\alpha}$ emission lines and the bar strength, whereas there is no apparent correlation between the AGN activity and the bar strength. We interpret that the former correlation is due to the dependence of bar-driven gas inflow on the strength of bar. The lack of correlation between AGN and bar properties suggests that the accretion of gas onto a supermassive black hole (SMBH) is regulated by the interplay between the bar and SMBH. The frequency of AGN seems to be dependent on the background density but the star formation rate does not. It suggests that star formation is a localized phenomenon that is mostly determined by the gas density in a galaxy, while AGN activity is more closely related to the host property such as mass and luminosity that are thought to be dependent on the environment through the density-luminosity relation.

본 연구에서는 SDSS DR6을 이용하여 별탄생율과 활동성 은하핵의 막대의 특성, 특히 막대의 세기에 대한 의존성을 조사하였다. 막대의 세기를 보다 잘 표현하기 위하여 막대의 길이와 축비를 이용하여 막대를 6개의 군으로 나누었다. $H{\alpha}$ 방출선 세기로부터 구한 별탄생율은 막대의 세기와 좋은 상관관계를 보였으나 활동성 은하핵은 막대와 또렷한 상관관계를 보이지 않았다. 전자의 상관관계는 막대에 의해 유발되는 가스 유입이 막대의 세기에 의존하기 때문이라고 해석되며, 활동성 은하핵이 막대의 특성과 특별한 상관관계를 보이지 않는 것은 초중량 블랙홀로 들어가는 가스의 양이 막대와 초거대 블랙홀과의 상호 작용에 의해 조절된다는 것을 의미한다. 활동성 은하핵은 주변의 밀도에 의해 영향을 받으나 별탄생율은 주변의 밀도와 무관해 보인다. 이것은 별탄생은 은하에서의 가스 밀도에 의해 결정되는 국지적인 현상인데 반해 활동성 은하핵은 질량이나 광도와 같은 은하의 특성이 밀도-광도관계로 표현되는 은하의 환경 의존성과 밀접한 관계가 있음을 암시한다.

Keywords

References

  1. Aguerri, J.A.L., 1999, A strong correlation between bar strength and Global Star Forming Activity in Isolated Barred Galaxies. Astronomy and Astrophysics, 351, 43- 46
  2. Ann, H.B. 2003, Secular Evolution of Barred Galaxies. Journal of the Korean Astronomical Society, 36, 241- 248 https://doi.org/10.5303/JKAS.2003.36.3.241
  3. Ann, H.B. and Lee, S.-W, 1987, Surface Photometry of Barred Galaxies: Global Strueture of Barred Galaxies. Journal of the Korean Astronomical Society, 20, 49-62
  4. Ann, H.B. and Lee, H.M. 2000, SPH Simulations of Barred Galaxies: Dynamical Evolution of Gaseous Disk. Journal of the Korean Astronomical Society, 33, 1-17
  5. Ann, H.B. and Lee, H.M 2004, Nuclear Spirals as Signatures of Supermassive Black Holes. The Astrophysical Journal, 613, Ll05-L108
  6. Ann, H.B. and Thakur, 2005, Formation of Nuclear Spirals in Barred Galaxies. The Astrophysical Journal, 620, 197-209 https://doi.org/10.1086/426008
  7. Athanassoula, E., 1992, The Existence and Shapes of Dust Lanes in Galactic Bars. Monthly Notices of the Royal Astronomical Society, 259, 345-364 https://doi.org/10.1093/mnras/259.2.345
  8. Baldwin, J., Phillips, M., and Terlevich, R, 1981, Classifi- cation Parameters for the Emission-line Spectra of Extragalactic Objects. Publications of the Astronomical Society of the Pacific, 93, 5-19 https://doi.org/10.1086/130766
  9. Barazza, F.D., Jogee, A., and Marinova, I., 2008, Bars in Disk-dominated and Bulge-dominated Galaxies at z - 0: New Insights from -3600 SDSS Galaxies. The Astrophysical Journal., 675, 1194-1212 https://doi.org/10.1086/526510
  10. Buta. R., Yasylyev, S .. Salo, H., and Laurikainen, E. 2005, The Distribution of Bar and Spiral Ann Strengths in Disk Galaxies. The Astronomical Journal, 130, 506-523 https://doi.org/10.1086/431251
  11. Combes, F. and Sanders, RH., 1981, Formation and Properties of Persisting Stellar Bars. Astronomy and Astrophysics, 96, 164-173
  12. Donas, J., Deharveng, J.M., Milliard, B., Laget, M., and Huguenin, D., 1987, Ultraviolet Observations and Starformation Rate in Galaxies. Astronomy and Astrophysics, 180, 12-26
  13. Dressler, A., 1980, Galaxy Morphology in Rich Clusters - Implications for the Formation and Evolution of Galaxies. The Astrophysical Journal, 236, 351-365 https://doi.org/10.1086/157753
  14. Elmegreen, B.G and Elmegreen, DM., 1985, Properties of Barred Spiral Galaxies. The Astrophysical Journal, 288, 438-455 https://doi.org/10.1086/162810
  15. Englmaier, P. and Shlosman, I., 2000, Density Waves inside the Inner Lindblad Resonance: Nuclear Spirals in Disk Galaxies. The Astrophysical Journal, 528, 677-686 https://doi.org/10.1086/308201
  16. Eskridge, P.B., Frogel, J.A., Pogge, RW. Quillen, A.C., Berlind, A.A., Davies, RL., DePoy, D.L., Gilbert, K.M., Houdashelt, ML., Kuchinski, L.E., Ramirez, S.V, Sellgren, K., Stutz, A., Terndrup, D.M., and Tiede, GP., 2002, Near-Infrared and Optical Morphology of Spiral Galaxies. The Astrophysical Journals, 143, 73-111
  17. Friedli, D. and Benz, W., 1993, Secular Evolution of Isolated Barred Galaxies. I-Gravitational Coupling between Stellar Bars and Interstellar Medium. Astronomy and Astrophysics, 268, 65-85
  18. Friedli, D. and Benz, W., 1995, Secular Evolution of Isolated Barred Galaxies. I.I. Coupling between Stars and Interstellar Medimn via Star Formation. Astronomy and Astrophysics, 301, 649-665
  19. Hasan, H., PfennigeI., D., and Norman, C., 1993, Galactic Bars with Central Mass Concentrations-Three-dimensional Dynamics. The Astrophysical Journal, 409, 91-109 https://doi.org/10.1086/172644
  20. Ho, L.C, Filippenko, A.V, and Sargent, W.L.W., 1997, The Influence of Bars on Nuclear Activity. The Astrophysical Journal, 487, 591-602 https://doi.org/10.1086/304643
  21. Hopkins, A.M., Miller, C.J., Nichol, RC., Connolly, A.J. et al., 2003, Star Formation Rate Indicators In The Sloan Digital Sky Survey. The Astrophysical Journal, 599, 971-991 https://doi.org/10.1086/379608
  22. Hyung, S., Son, D.-H., Ferruit, P., and Lee, W.-B. 2006, OASIS Spectral Images of the Seyfert galaxy NGC 5728. Journal of Korean Earth Science Society, 27, 569-578
  23. Isobe, T. and Feigelson, E.D. 1992, Far-infrared Luminosity Functions of Normal Galaxies. The Astrophysical Journal, 79, 197-211 https://doi.org/10.1086/191651
  24. Kauffinann, G, Heckman, T.M., Tremonti, C., Brinchmann, J., Charlot, S., White, S.D.M., Ridgway, S.E., Brinkmann, J., Fukugita, M., Hall, P.B., Ivezi, Z., Richards, G T., and Schneider, D.P., 2003, The Host Galaxies of Active Galactic Nuclei. Monthly Notices of the Royal Astronomical Society, 346, 1055-1077 https://doi.org/10.1111/j.1365-2966.2003.07154.x
  25. Kennicutt, R.CJr., 1998, Star Formation in Galaxies Along the Hubble Sequence. Annual Review of Astronomy and Astrophysics, 36, 189-231 https://doi.org/10.1146/annurev.astro.36.1.189
  26. Kewley, L.J., Dopita, M.A., Sutherland, R.S., Heisler, C.A., and Trevena, J., 2001, Theoretical Modeling of Starburst Galaxies. The Astrophysical Journal, 556, 121-140 https://doi.org/10.1086/321545
  27. Knapen, J.H., Shlosman, I., and Peletier, R., 2000, A Subarcsecond Resolution Near-Infrared Study of Seyfert and Normal Galaxies. II. Morphology. The Astrophysical Journal, 529, 93-100 https://doi.org/10.1086/308266
  28. Laurikainen, E., Salo, R., and Rautiainen, P., 2001, Bar Strengths and Nuclear Activity. Astronomical Society of Pacific Conference Series, 249, 183-186
  29. Laurikainen, E., Salo, H., and Rautiainen, P., 2002, Comparison of Bar Strengths in Active and Non-active Galaxies. Monthly Notices of the Royal Astronomical Society, 331, 880-892 https://doi.org/10.1046/j.1365-8711.2002.05243.x
  30. Laurikainen, E. and Salo, H., 2004, Comparison of Bar Strengths and Fractions of Bars in Active and Nonactive Galaxies. The Astrophysical Journal, 607, 103-124 https://doi.org/10.1086/383462
  31. Maciejewski, W., Teuben, P.J., Sparke, L.S., and Stone, J.M., 2002, Gas Inflow in Barred Galaxies - Effects of Secondary Bars. Monthly Notices of the Royal Astronomical Society, 329, 502-512 https://doi.org/10.1046/j.1365-8711.2002.04957.x
  32. Marquez, I., Durret, F., Masegosa, J., Moles, M., Gonzalez Delgado, R.M., Marrero, I., Maza, J., Perez, E., and Roth, M., 2000, Near-infrared Photometry of Isolated Spirals with and without an AGN-II. Photometric Properties of the Host Galaxies. Astronomy and Astrophysics, 360, 431-438
  33. Martin, P., 1995, Quantitative Morphology of Bars in Spiral Galaxies. The Astronomical Journal, 109, 2428- 2443 https://doi.org/10.1086/117461
  34. Martinet, L. and Friedli, D. 1997, Bar Strength and Star Formation Activity in Late-type Barred Galaxies. Astronomy and Astrophysics, 323, 363-373
  35. Norman, C.A., Sellwood, J.A., and Hasan, H. 1996, Bar Dissolution and Bulge Formation: An Example of Secular Dynamical Evolution in Galaxies. The Astrophysical Journal, 462, 114-124 https://doi.org/10.1086/177133
  36. Ohta, K., Hamabe, M., and Wakamatsu, K., 1990, Surface Photometry of Barred Spiral Galaxies. The Astrophysical Journal, 357, 71-90 https://doi.org/10.1086/168892
  37. Park, C., Choi, Y.-Y., Vogeley, M.S., Gott, J.R., and Blanton, M.R., 2007, Environmental Dependence of Properties of Galaxies in the Sloan Digital Sky Survey. The Astrophysical Journal, 658, 898-916 https://doi.org/10.1086/511059
  38. Piner, B.G, Stone, J.M., and Teuben, PJ., 1995, Nuclear Rings and Mass Inflow in Hydrodynamic Simulations of Barred Galaxies. The Astrophysical Journal, 449, 508-520 https://doi.org/10.1086/176075
  39. Pompea, S.M. and Rieke, GH., 1990, A Test of the Association of Infrared Activity with Bars. The Astrophysical Journal, 356, 416-429 https://doi.org/10.1086/168849
  40. Regan, M.W. and Teuben, PJ., 2004, Bar-driven Mass Inflow: How Bar Characteristics Affect the Inflow. The Astrophysical Journal, 600, 595-612 https://doi.org/10.1086/380116
  41. Scoville, N., Abraham, R.G, Aussel, H., Barnes, J.E. et aI., 2007, COSMOS: Hubble Space Telescope Observations The Astrophysical Journal Supplement Series, 172, 38-45 https://doi.org/10.1086/516580
  42. Sheth, K., Vogel, S.N., Regan, M.W., Thomley, M., and Teuben, PJ., 2005, Secular Evolution via Bar-driven gas Inflow: Results from BIMA SONG. The Astrophysical Journal, 632, 217-226 https://doi.org/10.1086/432409
  43. Sheth, K., Elmegreen, D.M., Elmegreen, B.G, Capak, P. et aI., 2008, Evolution of the Bar Fraction in COSMOS: QuantifYing the Assembly of the Hubble Sequence. The Astrophysical Journal, 675, 1141-1155 https://doi.org/10.1086/524980
  44. Simkin, S.M., Su, HJ., and Schwarz, M.P., 1980, Nearby Seyfert Galaxies. The Astrophysical Journal, 237, 404- 413 https://doi.org/10.1086/157882
  45. Son, D.-H. and Hyung, S., 2004, BLR Density Variations of the Seyfert 1 Galaxies NGC 4151 and NGC 5548. Journal of Korean Earth Science Society, 25, 495-501
  46. van den Wei, A., 2008, The Dependence of Galaxy Morphology and Structure on Environment and Stellar Mass. The Astrophysical Journal, 675, L13-L16 https://doi.org/10.1086/529432
  47. Veilleux, S. and Osterbrock, D.E., 1987, Spectral Classification of Emission-line Galaxies. The Astrophysical Journal Supplement Series, 63, 295-310 https://doi.org/10.1086/191166
  48. Wada, K. and Habe, A., 1992, Rapid Gas Supply to a Nuclear Region by Self-gravitational Instability in a Weak Barred Potential. Monthly Notices of the Royal Astronomical Society, 258, 82-94 https://doi.org/10.1093/mnras/258.1.82

Cited by

  1. Effects of Gas on Formation and Evolution of Stellar Bars and Nuclear Rings in Disk Galaxies vol.872, pp.1, 2019, https://doi.org/10.3847/1538-4357/aafc5f