References
- J. Stam, “Stable fluids,” ACM SIGGRAPH ’99, pp. 121–128, 1999.
- D. Kim and H. Choi, “A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids,” Journal of Computational Physics 162, pp. 411–428, 2000.
- Y.-T. Zhang and C.-W. Shu, “High-order weno schemes for hamilton-jacobi equations on triangular meshes,” SIAM Journal of Scientific Computing, pp. 1005–1030, 2003.
- S. Ii, M. Shimuta, and F.Xiao, “A 4th-order and single-cellbased advection scheme on unstructured grids using multimoments,” Computer Physics Communications 173, pp. 17–33, 2005.
- B. E. Feldman, J. F. O'Brien, and B. Klingner, “Animating gases with hybrid meshes,” ACM Transactions on Graphics 24, 3, pp. 904–909, 2005.
- B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O'Brien, “Fluid animation with dynamic meshes,” ACM Transactions on Graphics 25, 3, pp. 820–825, 2006.
- B. Kim., Y. Liu, I. Llamas, and J. Rossignac, “Advections with significantly reduced dissipation and diffusion,” IEEE Trans. Vis. Comput. Graph 13, 1, pp. 135–144, 2007.
- A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, “An unconditionally stable maccormack method,” SIAM Journal of Scientific Computing, p. (in press), 2008.
- O.-Y. Song, H. Shin, and H.-S. Ko, “Stable but nondissipative water,” ACM Transactions on Graphics 24, 1, pp. 81–97, 2005.
- O.-Y. Song, D. Kim, and H.-S. Ko, “Derivative particles for simulating detailed movements of fluids,” IEEE Transactions on Visualization and Computer Graphics 13,4, pp. 711–719, 2007.
- D. Kim, O.-Y. Song, and H.-S. Ko, “A semi-lagrangian cip fluid solver without dimensional splitting,” Computer Graphics Forum 27, pp. 467–475, 2008.
- N. Chentanez, B. Feldman, F. Labelle, J. O’Brien, and J. Shewchuk, “Liquid simulation on lattice-based tetrahedral meshes,” In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 219–228, 2007.
- A.W. Bargteil, T. G. Goktekin, J. F. O'Brien, and J. A. Strain, “A semi-lagrangian contouring method for fluid simulation,” ACM Transactions on Graphics 25, 1, pp. 19–38, 2006.
- J. Warren, S. Schaefer, A. N. Hirani, , and M. Desbrun, “Barycentric coordinates for convex sets,” Advances in Computational and Applied Mathematics, pp. 319–338, 2007.
- F. Losasso, F. Gibou, and R. Fedkiw, “Simulating water and smoke with an octree data structure,” In the Proceedings of ACM SIGGRAPH 2004, pp. 457–462, 2004.
- F. Gibou, R. Fedkiw, L.-T. Cheng, and M. Kang, “A second order accurate symmetric discretization of the poisson equation on irregular domains,” Journal of Computational Physics 176, pp. 205–227, 2002.
- C. W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” Journal of Computational Physics 77, pp. 439–471, 1988.
- A. Staniforth and J. Cote, “Semi-lagrangian integration scheme for atmospheric model - a review,” Mon.Weather Rev. 199, 12, pp. 2206–2223, 1991.
- T. Yabe and T. Aoki, “A universal solver for hyperbolic equations by cubic-polynomial interpolation i. one-dimensional solver,” Computer Physics Communications 66, pp. 219–232, 1991.
- T. Yabe and T. Aoki, “A universal solver for hyperbolic equations by cubic-polynomial interpolation ii. two and three-dimensional solver,” Computer Physics Communications 66, pp. 232–242, 1991.
- T. Yabe, F. Xiao, and T. Utsumi, “The constrained interpolation profile method for multiphase analysis,” Journal of Computational Physics 169, pp. 556–593, 2001.
- P. Alliez, D. Cohen-Steiner, M. Yvinec, , and M. Desbrun, “Variational tetrahedral meshing,” In the Proceedings of ACM SIGGRAPH 2005, pp. 617–625, 2005.
- S. Ii and F. Xiao, “Cip/multi-moment finite volume method for euler equations : A semi-lagrangian characteristic formulation,” Journal of Computational Physics 222, pp. 849–871, 2007.