Synthesis of Poly(lactic acid)-g-Acrylic Acid Ion Exchanger by UV Radiation Method and Metal Adsorption Properties

UV조사에 의한 Poly(lactic acid)-g-Acrylic Acid 이온교환체의 합성 및 흡착특성

  • Choi, Eun-Mi (Department of Chemical Engineering, College of Engineering, Chungnam National University) ;
  • Son, Bok-Gi (Department of Chemical Engineering, College of Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, College of Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (Department of Chemical Engineering, College of Engineering, Chungnam National University)
  • 최은미 (충남대학교 공과대학 바이오응용화학부) ;
  • 손복기 (충남대학교 공과대학 바이오응용화학부) ;
  • 이창수 (충남대학교 공과대학 바이오응용화학부) ;
  • 황택성 (충남대학교 공과대학 바이오응용화학부)
  • Published : 2009.01.25

Abstract

This study investigates the metal adsorption properties of poly (lactic acid)-g-acrylic acid (PLA-g- AAc) synthesized by UV irradiation method. The properties including degree of grafting, water content, and ion exchange capacity (IC) strongly depend on the critical experimental factors such as UV intensity and AAc concentration. Under the optimized condition, the maximum degree of grafting, the IC value, and water content are 28%, 1.13 meq/g, and 38%, respectively. The synthesized ion exchanger shows strong capacity of adsorption for divalent metal ions such as $Cu^{2+}$, $Ni^{2+}$, and $Co^{2+}$, and greater selectivity of adsorption for $Cu^{2+}$.

본 연구는 UV 조사법으로 poly(lactic acid)-g-acrylic acid(PLA-g-AAc) 이온교환체를 합성하고 이들의 금속흡착 특성을 ICP-AES 분석을 통해 확인하였다. PLA-g-AAC의 UV 조사량과 AAc의 농도변화에 따른 함수율, 그래프트율 및 이온교환용량을 측정하였다. 그래프트율은 AAc 및 benzophenone(BP) 농도가 각각 1.0, 0.1 mol/L일때 최대 28%이었으며, 이온교환용량과 함수율은 각각 1.13 meq/g와 38%로 UV 조사량 및 AAc의 농도가 증가함에 따라 증가하였다. 한편, PLA-g-AAc의 흡착시간에 따른 $Cu^{2+}$, $Co^{2+}$, $Ni^{2+}$에 대한 선택 흡착성은 모두 높게 나타났으며 $Cu^{2+}$가 가장 우수한 선택흡착성을 나타내었다.

Keywords

References

  1. Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 21, 117 (2000) https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  2. H. Tsuji and Y. Ikada, J. Appl. Polym. Sci., 67, 405 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980118)67:3<405::AID-APP3>3.0.CO;2-Q
  3. H. Urayama, T. Kanamori, and Y. Kimura. Macromol. Mater. Eng., 287, 116 (2002)
  4. R. A. Jain, Biomaterials, 21, 2475 (2000) https://doi.org/10.1016/S0142-9612(00)00115-0
  5. A. G. Mikos, M. D. Lyman, L. E. Freed, and R. Langer, Biomaterials, 15, 55, (1994) https://doi.org/10.1016/0142-9612(94)90197-X
  6. M. S. Taylor, A. U. Daniels, K. P. Andriano, and J. J. Heller, Appl. Biomater., 5, 151 (1994) https://doi.org/10.1002/jab.770050208
  7. T. G. Park, S. Cohen, and R. Langer, Macromolecules, 25, 116 (1992) https://doi.org/10.1021/ma00027a019
  8. K. R. Kamath and K. N. Park, Adv. Drug. Deliver. Rev., 11, 59 (1993) https://doi.org/10.1016/0169-409X(93)90027-2
  9. S. S. Davis, L. Illum, and S. Stolnik, Curr. Opin. Colloid Interf. Sci., 1, 660 (1996) https://doi.org/10.1016/S1359-0294(96)80105-1
  10. U. Edlund and A. C. Albertsson, Adv. Polym. Sci., 157, 67 (2002) https://doi.org/10.1007/3-540-45734-8_3
  11. T. Iwata and Y. Doi, Macromolecules, 31, 2461 (1998) https://doi.org/10.1021/ma980008h
  12. R. G. Sinclair, J. Macromol. Sci. Pure Appl. Chem., A33, 585 (1996)
  13. D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, and S. H. Hyon, J. Polym. Sci. Polym. Phys., 40, 95 (2002) https://doi.org/10.1002/polb.10076
  14. K. D. Park, H. J. Hung, J. J. Kim, K. D. Ahn, and D. K. Han, Macromol. Res., 14, 552 (2006) https://doi.org/10.1007/BF03218723
  15. L. Yanfeng, W. Yuanliang, N. Xufeng, F. Chunhua, and W. Suujun, Eur. Polym. J., 43, 3856 (2007)
  16. Y. Yang, M. C. Porte, P. Marmey, A. J. E. Haj, J. Amedec, and C. Baquey, Nuclear Instruments and Methods in Physics Reseach B, 207, 165 (2003) https://doi.org/10.1016/S0168-583X(03)00456-7
  17. B. Yang and W. Yang, J. Membr. Sci., 218, 247 (2003) https://doi.org/10.1016/S0376-7388(03)00182-0