References
-
Aguilar-Ruiz, Jes
$\acute{u}$ s (2005), Shifting and scaling patterns from gene expression data. Bioinformatics, 21, 3840-3845 https://doi.org/10.1093/bioinformatics/bti641 - Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer, NY
- Brock, G., Pihur, V., Datta, S., and Datta, S. (2008), clValid, an R package for cluster validation. Journal of Statistical Software, 25, 1-22
-
Cali
$\acute{n}$ ski, T., and Harabasz, J. (1974), A dendrite method for cluster analysis. Communications in Statistics-Simulation and Computation, 3, 1-27 https://doi.org/10.1080/03610917408548446 - Cheng, Y. and Church, G. (2000), Biclustering of expression data. Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 93-103
- Davies, D. and Bouldin, D. (1979), A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 224-227 https://doi.org/10.1109/TPAMI.1979.4766909
- Dice, L. (1945), Measures of the amount of ecologic association between species. Ecology, 26, 297-302 https://doi.org/10.2307/1932409
- Downton, M. and Brennan, T. (1980), Comparing classifications:an evaluation of several coefficients of partition agreement. Class. Soc. Bull, 4, 53-54
- Dunn, J. (1973), A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybernetics and Systems, 3, Cybernetics and Systems, 3, 32-57 https://doi.org/10.1080/01969727308546046
- Fowlkes, E. and Mallows, C. (1983), A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78, 553-569 https://doi.org/10.2307/2288117
- Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001), On clustering validation techniques, Journal of Intelligent Information Systems, 17, 107-145 https://doi.org/10.1023/A:1012801612483
- Handl, J., Knowles, J., and Kell, D. (2005), Computational cluster validation in post-genomic data analysis, Bioinformatics, 21, 3201-3212 https://doi.org/10.1093/bioinformatics/bti517
- Hubert, L. and Arabie, P. (1985), Comparing partitions. Journal of Classification, 2, 193-218 https://doi.org/10.1007/BF01908075
- Jain, A. and Dubes, R. (1988), Algorithms for clustering data, Prentice-Hall, Englewood Cliff, NJ
- Liu, X. and Wang, L. (2007), Computing the maximum similarity biclusters of gene expression data. Bioinformatics, 23, 50-56 https://doi.org/10.1093/bioinformatics/btl321
- Madeira, S. and Oliveira, A. (2004), Biclustering algorithms for biological data analysis: a survey. IEEE /ACM Transactions on Computational Biology and Bioinformatics, 1, 24-45 https://doi.org/10.1109/TCBB.2004.2
-
Preli
$\acute{c}$ , A., Bleuler, S., Zimmermann, P.,Wille, A., B$\ddot{u}$ hlmann, P., Gruissem, W., Hennig, L., Thiele, L., and Zitzler, E. (2006), A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22, 1122-1129 https://doi.org/10.1093/bioinformatics/btl060 - Rand, W. (1971), Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850 https://doi.org/10.2307/2284239
-
Santamar
$\acute{i}$ a, R., Quintales, L., and Ther$\acute{o}$ n, R. (2007), Methods to bicluster validation and comparison in microarray data. Lecture Notes in Computer Science:Proceedings of IDEAL'07, 780-789 - Turner, H., Bailey, T., and Krzanowski, W. (2005), Improved biclustering of microarray data demonstrated through systematic performance tests. Computational Statistics and Data Analysis, 48, 235-254 https://doi.org/10.1016/j.csda.2004.02.003
- Xu, R. and Wunsch, D., II (2005), Survey of clustering algorithms, IEEE Transactions on Neural Networks, 16, 645-678 https://doi.org/10.1109/TNN.2005.845141
-
Yang, Y., Wang, W., Wang, H., and Yu, P. (2002),
$\delta$ -clusters: capturing subspace correlation in a large data set, Proceedings. 18th International Conference on Data Engineering, 517-528