Olefin Separation Performances and Coordination Behaviors of Facilitated Transport Membranes Based on Poly(styrene-b-isoprene-b-styrene)/Silver Salt Complexes

  • Lee, Dong-Hoon (Department of Chemical Engineering, Hanyang University) ;
  • Kang, Yong-Soo (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Published : 2009.02.25

Abstract

Solid-state facilitated, olefin transport membranes were prepared by complexation of poly(styrene-b-iso-prene-b-styrene) (SIS) block copolymer and silver salt. Facilitated olefin transport was not observed up to a silver mole fraction of 0.14, representing a threshold concentration, above which transport increased almost linearly with increasing silver salt concentration. This was because firstly the silver ions were selectively coordinated with the C=C bonds of PI blocks up to a silver mole fraction of 0.20, and secondly the coordinative interaction of the silver ions with the aliphatic C=C bond was stronger than that with the aromatic C=C bond, as confirmed by FT-Raman spectroscopy. Small angle X-ray scattering (SAXS) analysis showed that the cylindrical morphology of the neat SIS block copolymer was changed to a disordered structure at low silver concentrations ($0.01{\sim}0.02$). However, at intermediate silver concentrations ($0.15{\sim}0.20$), disordered-ordered structural changes occurred and finally returned to a disordered structure again at higher silver concentrations (>0.33). These results demonstrated that the facilitated olefin transport of SIS/silver salt complex membrancs was significantly affected by their coordinative interactions and nano-structural morphology.

Keywords

References

  1. R.L. Burns and W.J. Koros. J. Membr.Sci., 211, 299 (2003) https://doi.org/10.1016/S0376-7388(02)00430-1
  2. I. Pinnau, L.G. Toy, and C. Casillas, U.S. Patent 5,670,015 (1997)
  3. S. Sunderrajan, B.D. Freeman, C.K. Hall, and I. pinnau, J. Membr. Sci., 182, 1 (2001) https://doi.org/10.1016/S0376-7388(00)00569-X
  4. I. Pinnau and L.G. Toy, J. Membr. Sci. 184. 39 (2001) https://doi.org/10.1016/S0376-7388(00)00603-7
  5. T.C. Merkel, Z. He, A. Morsato, and I. Pinnau, Chem, com-mun., 1596 (2003)
  6. S.U.Hong, J. Won, and Y.S. Kang, Adv. Mater., 12, 968 (2000) https://doi.org/10.1002/1521-4095(200006)12:13<968::AID-ADMA968>3.0.CO;2-W
  7. J.H.Kim, B.R. Min, C.K.Kim, J. Won, and Y.S. Kang, Marcomolecules, 34, 6052 (2001) https://doi.org/10.1021/ma0020032
  8. J.H. Kim, B.R. Min, C.K. Kim, J. Won, and Y.S. Kang, Macromolecules, 35, 5250 (2002) https://doi.org/10.1021/ma020179t
  9. J.H. Kim, B.R. Min, J. Won, and Y.S. Kang, Chem. Eur. J., 8, 650 (2002) https://doi.org/10.1002/1521-3765(20020201)8:3<650::AID-CHEM650>3.0.CO;2-X
  10. J.H. Kim, B.R. Min, C.K.Kim, J. Won. and Y.S. Kang, J. Polym. Sci. Part B: Polym. Phys., 40, 1813 (2002) https://doi.org/10.1002/polb.10241
  11. J.H. Kim, J.H. Ryu, H. Kim, B.S.Ahn,and Y.S.Kang,MAcromole-cules, 36, 4577 (2003) https://doi.org/10.1021/ma0340210
  12. S.H.Kim, J.H.Ryu, H.Kim, B.S.Ahn, and Y.S.Kang, Chem. Commun., 1261 (2000)
  13. J.H. Kim, B.R. Min, K.B. Lee, J.Won, and Y.S. Kang, Chem. Commun., 2732 (2000)
  14. J.H.Kim, B.R. Min, J. Won, S.H. Joo, H.S.Kim, and Y.S.Kang, Macromolecules, 36, 6183(2003) https://doi.org/10.1021/ma034314t
  15. S. W. Kang, J. H. Kim, J. Won, K. Char, and Y. S. Kang, Chem. Commun., 768 (2003)
  16. H. Lee, D. B. Kim, S. H. Kim, H. S. Kim, S. J. Kim, D. K. Choi, and J. Won, Angew. Chem. Int. Ed., 43, 3053 (2004) https://doi.org/10.1002/anie.200353632
  17. J. H. Kim, B. R. Min, K. B. Lee, J. Won, and Y. S. Kang, J. Membr. Sci., 241, 403 (2004) https://doi.org/10.1016/j.memsci.2004.05.027
  18. S. W. Kang, J. H. Kim, K. S. Oh, J. Won, K. Char, H. S. Kim, and Y. S. Kang, J. Membr. Sci., 42, 3344 (2004)
  19. J. H. Kim, B. R. Min, Y. W. Kim, S. W. Kang, J. Won, and Y. S. Kang, Macromol. Res., 15, 343 (2007) https://doi.org/10.1007/BF03218797
  20. J. H. Kim, J. Won, and Y. S. Kang, J. Membr. Sci., 237, 199 (2004) https://doi.org/10.1016/j.memsci.2004.03.013
  21. J. H. Kim, J. Won, and Y. S. Kang, J. Polym. Sci. Part B: Polym. Phys., 42, 2263 (2004) https://doi.org/10.1002/polb.20106
  22. J. H. Kim, D. H. Lee, J. Won, H. Jinnai, and Y. S. Kang, J. Membr. Sci., 281, 369 (2006) https://doi.org/10.1016/j.memsci.2006.04.002
  23. D. H. Lee, J. H. Kim, S. W. Kang, and Y. S. Kang, Macromol. Res., in press
  24. B. L. Papke, M. A. Ratner, and D. F. Shriver, J. Electrochem. Soc., 129, 1434 (1982) https://doi.org/10.1149/1.2124179
  25. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, Macromol. Res., 14, 199 (2006) https://doi.org/10.1007/BF03218509
  26. S. Rosselli, A.-D. Ramminger, T. Wagner, B. Silier, S. Wiegand, W. Haubler, G. Lieser, V. Scheumann, and S. Hoger, Angew, Chem. Int. Ed., 40, 3138 (2001)
  27. M. A. Hillmyer, P. M. Lipic, D. A. Hajduk, K. Almdal, and F. S. Bates, J. Am. Chem. Soc., 119, 2749 (1997) https://doi.org/10.1021/ja963622m
  28. S. Sakurai, S. Aida, S. Okamoto, T. Ono, K. Imaizumi, and S. Nomura, Macromolecules, 34, 3672 (2001) https://doi.org/10.1021/ma002123+
  29. C. K. Kim, J. Won, H. S. Kim, Y. S. Kang, H. G. Li, and C. K. Kim, J. Comp. Chem., 22, 827 (2001) https://doi.org/10.1002/jcc.1048