Synthesis and Characterization of Organic Light-Emitting Copolymers Containing Naphthalene

  • Kim, Jung-Sik (School of Materials Science and Engineering and ERI, Gyeongsang National University) ;
  • Heo, Jun (School of Materials Science and Engineering and ERI, Gyeongsang National University) ;
  • Kang, Peng-Tao (School of Materials Science and Engineering and ERI, Gyeongsang National University) ;
  • Kim, Jin-Hak (School of Materials Science and Engineering and ERI, Gyeongsang National University) ;
  • Jung, Sung-Ouk (School of Materials Science and Engineering and ERI, Gyeongsang National University) ;
  • Kwon, Soon-Ki (School of Materials Science and Engineering and ERI, Gyeongsang National University) ;
  • Kim, Un-Kyung (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kim, Yun-Hi (Department of Chemistry and RINS, Gyeongsang National University)
  • Published : 2009.02.25

Abstract

Conjugated PPV-derived block copolymers containing 2-ethylhexyloxynaphthalene unit were synthesized and characterized in this study. The resulting polymers were soluble in common organic solvents and showed good thermal stabilities, The weight-average molecular weights ($M_w$) of the copolymers ranged from 246,000 to 475,000 with PDIs of $1.3{\sim}2.1$. The optical properties of these polymers, measured both in a chloroform solution and on a film, showed a maximum absorption at $405{\sim}476\;nm$ for Copolymers $I{\sim}VIII$. In the PL spectra, Copolymers $I{\sim}VIII$ showed maximum peaks at $510{\sim}566\;nm$. The HOMOs, LUMOs and band gaps of the PPV derivatives of Copolymers $I{\sim}VIII$ were $5.30{\sim}5.77$, $3.04{\sim}3.24$, and $2.5{\sim}2.2\;eV$, respectively, The multi-layered, light-emitting diodes of ITO/PEDOT/copolymers/LiF/Al exhibited turn-on voltages of $6{\sim}2.5\;V$ Copolymer VIII exhibited the maximum brightness of $3.657\;cd/m^2$. Particularly, Copolymer VII, with an identical composition of MEH-PPV and naphthalene-PPV, showed a maximum luminance efficiency and power efficiency of 2,63 cd/A and 1.06 lm/W, respectively.

Keywords

References

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, and A. B. Holmes, et al., Nature,347, 539 (1990) https://doi.org/10.1038/347539a0
  2. A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, Appl. Phys. Lett., 7, 2 (1992) https://doi.org/10.1063/1.1754236
  3. Z. Yuan, Z. Yu, and S. Tan, J. Mater. Sci., 41, 6103 (2006) https://doi.org/10.1007/s10853-006-0607-5
  4. Y. H. Kim, S. J. Park, J. W. Park, J. H. Kim, and S. K. Kwon, Macromol. Res., 15, 216 (2007) https://doi.org/10.1007/BF03218778
  5. C. H. Yang, C. J. Bhongale, C. H. Chou, S. H. Yang, C. N. Lo, T. M. Chen, and C. S. Hsu, Polymer, 48, 116 (2007) https://doi.org/10.1016/j.polymer.2006.11.012
  6. Y. H. Kim, D. C. Shin, H. You, and S. K. Kwon, Polymer, 46, 7969 (2005) https://doi.org/10.1016/j.polymer.2005.06.088
  7. Y. H. Kim, S. Y. Jung, S. O. Jung, M. H. Park, and S. K. Kwon, J. Polym. Sci. Part A: Polym. Chem., 44, 4923 (2006) https://doi.org/10.1002/pola.21579
  8. D. Braun and A. J. Heeer, Appl. Phys. Lett., 58, 1982 (1991) https://doi.org/10.1063/1.105039
  9. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, and D. D. C. Bradley, et al., Nature, 397, 121 (1999) https://doi.org/10.1038/16393
  10. Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J. Heeger, Nature, 397, 414 (1999) https://doi.org/10.1038/17087
  11. C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, and H. Frohne, et al., Nature, 421, 829 (2003) https://doi.org/10.1038/nature01390
  12. A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew. Chem. Int. Ed., 37, 402 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  13. M. Mitschke and P. Bauerle, J. Mater. Chem., 10, 1471 (2000) https://doi.org/10.1039/a908713c
  14. M. T. Bernius, M. Inbasekaran, J. O’'Brien, and W. S. Wu, Adv. Mater., 12, 1737 (2000) https://doi.org/10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N
  15. N. H. S. Lee, Z. K. Chen, W. Huang, Y. S. Xu, and Y. Cao, J. Polym. Sci. Part A: Polym. Chem., 42, 1647 (2004) https://doi.org/10.1002/pola.11029
  16. H. G. Gilch and W. L. Wheelwright, J. Polym. Sci. Part A: Polym. Chem., 4, 1337 (1966) https://doi.org/10.1002/pol.1966.150040602
  17. N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend,P. L. Burn, and A. B. Holmes, Nature, 365, 628 (1993) https://doi.org/10.1038/365628a0
  18. M. Strukelj, F. Papadimitrakopoulos, T. M. Miller, and L. Rothberg, J. Science, 267, 1969 (1995) https://doi.org/10.1126/science.267.5206.1969
  19. Y. H. Kim, H. O. Lee, K. S. Lee, and S. K. Kwon, Macromol. Res., 11, 471 (2003) https://doi.org/10.1007/BF03218978
  20. S. A. Jenekhe, Adv. Mater., 7, 309 (1995) https://doi.org/10.1002/adma.19950070314
  21. J. Corni, D. A. dos Santos, X. Crispin, R. Silbey, and L. J. Bredas, J. Am. Chem. Soc., 120, 1289 (1998) https://doi.org/10.1021/ja973761j
  22. H. Becker, H. Spreitzer, K. Ibom, and W. Kreuder, Macromolecules, 32, 4925 (1999) https://doi.org/10.1021/ma990347q
  23. D. C. Shin, Y. H. Kim, H. You, J. G. Jin, and S. K. Kwon, J. Polym. Sci. Part A: Polym. Chem., 42, 5636 (2004) https://doi.org/10.1002/pola.20402
  24. J. Heo, J. C. Park, Y. J. Kang, Y. H. Kim, J. W. Kim, H. You, and S. K. Kwon, 30th PSK Fall Meeting (Korea), 28, 270 (2003)
  25. M. Onoda, M. Uchida, Y. Ohmori, and K. Yoshino, Jpn. J. Appl. Phys., 32, 3895 (1993) https://doi.org/10.1143/JJAP.32.3895
  26. S. Tasch, W. Graupner, G. Leising, L. Pu, M. W. Wagner, and R. H. Grubbs, Adv. Mater., 7, 903 (1995) https://doi.org/10.1002/adma.19950071106
  27. M. Hanak, J. L. Segura, and H. Spreitzer, Adv. Mater., 8, 663 (1996) https://doi.org/10.1002/adma.19960080814
  28. S. J. Lee, C. H. Ahn, J. H. Ko, S. Y. Chae, and M. Lee, Macromol. Res., 14, 129 (2006) https://doi.org/10.1007/BF03218499
  29. S. E. Döttinger, M. Hohloch, J. L. Segura, E. Steinhuber, M. Hanak, A. Tompert, and D. Oelkrug, Adv. Mater., 9, 233 (1997) https://doi.org/10.1002/adma.19970090309
  30. P. Martinez-Ruiz, B. Behnisch, K. H. Schweikart, M. Hanak, L. Lüer, and D. Oelkrug, Chem. Eur. J., 6, 1294 (2000) https://doi.org/10.1002/(SICI)1521-3765(20000417)6:8<1294::AID-CHEM1294>3.0.CO;2-W
  31. A. Hirao, Y. Tsunoda, A. Matsuo, K. Sugiyama, and T. Watanabe, Macromol. Res., 14, 272 (2006) https://doi.org/10.1007/BF03219083
  32. Y. H. Kim, D. C. Shin, and S. K. Kwon, Polymer, 46, 4647 (2005) https://doi.org/10.1016/j.polymer.2005.03.051
  33. Y. J. Yu, S. H. Lee, D. H. Choi, J. I. Jin, and N. Tessler, Macromol. Res., 15, 142 (2007) https://doi.org/10.1007/BF03218765
  34. Y. H. Kim, D. C. Shin, H. S. Kim, H. You, and S. K. Kwon, J. Polym. Sci. Part A: Polym. Chem., 43, 6515 (2005) https://doi.org/10.1002/pola.21126
  35. F. Wudl and G. Srdanov, US Patent 5, 189, 136 (1993)
  36. S. Y. Song, K. S. Kim, Y. B. Lee, J. S. Kwak, E. K. Kim, Y. K. Cho, S. K. Kwon, Q. Zhao, W. I. Jung, J. J. Kim, and Y. H. Kim, J. Appl. Polym. Sci., 110, 2009 (2008) https://doi.org/10.1002/app.28824
  37. Y. H. Kim, J. W. Park, D. C. Shin, H. You, and S. K. Kwon, J. Polym. Sci. Part A: Polym. Chem., 45, 900 (2007) https://doi.org/10.1002/pola.21883
  38. Q. Zhao, Y. H. Kim, T. T. M. Dong, D. C. Shin, H. You, and S. K. Kwon, J. Polym. Sci. Part A: Polym. Chem., 45, 341 (2007) https://doi.org/10.1002/pola.21740
  39. Y. H. Kim and S. K. Kwon, J. Appl. Polym. Sci., 100, 2151 (2006) https://doi.org/10.1002/app.23602