Synthesis of Platinum Nanoparticles Using Electrostatic Stabilization and Cluster Duplication of Perfluorinated Ionomer

  • Lee, Pyoung-Chan (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Kim, Dong-Ouk (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Han, Tai-Hoon (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Kang, Soo-Jung (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Pu, Lyong-Sun (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Nam, Jae-Do (Department of Polymer Science and Engineering, SAINT, Sungkyunkwan University) ;
  • Kim, Byung-Woo (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Jun-Ho (Polymer Technology Institute, Sungkyunkwan University)
  • Published : 2009.03.25

Abstract

Platinum (Pt) nanoparticles were prepared by the liquid-phase reduction of tetraammineplatinum (II) chloride $([Pt(NH_3)_4]Cl_2)$ using Nafion as a stabilizer under various conditions of the Nation phase. This method is novel in its use of electrostatic interactions between the Pt complex ions and sulfonic groups in the hydrated Nation molecules. The synthesized Pt nanoparticles of the recast film system had a cubic shape. In the case of the Nation solution system, the Pt nanoparticles mainly had a spherical shape. The shapes and sizes of the Pt nanoparticles were strongly influenced by the Nation phase.

Keywords

References

  1. R. C. Hayward, D. A. Saville, and I. A. Aksay, Nature, 404, 56 (2000) https://doi.org/10.1038/35003530
  2. K. Esumi, T. Hosoyo, A. Suzuki, and K. Torigoe, Langmuir, 16, 2978 (2000) https://doi.org/10.1021/la991040n
  3. T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake, J. Phys. Chem. B, 103, 3818 (1999) https://doi.org/10.1021/jp983478m
  4. S.-H. Hong, S.-A. Lee, Y. Lee, T.-S. Kim, S. Won, and J.-D. Nam, Marcromol. Res., 16, 204 (2008) https://doi.org/10.1007/BF03218854
  5. K. H. A. Lau, W. Konoll, and D. H. Kim, Marcromol. Res., 15, 211 (2007) https://doi.org/10.1007/BF03218777
  6. J. K. Kim and H. Ahn, Marcromol. Res., 16, 163 (2008) https://doi.org/10.1007/BF03218846
  7. J.-H. Nam, Y.-Y. Jang, Y.-U. Kwan, and J.-D. Nam, Electrochem. Commun., 6, 737 (2004) https://doi.org/10.1016/j.elecom.2004.05.016
  8. J.-H. Lee, D. S. Kim, G. S. Song, Y. Lee, S. B. Jung, and J.-D. Nam, Macromol. Rapid Commun., 28, 634 (2007) https://doi.org/10.1002/marc.200600757
  9. T. L. Truong, Y. Lee, H. R. Choi, J. C. Koo, H. N. Nguyen, N. D. Luong, and J.-D. Nam, Marcromol. Res., 15, 465 (2007) https://doi.org/10.1007/BF03218815
  10. D. G. Duff and P. P. Edwards, J. Phys. Chem., 99, 15934 (1995) https://doi.org/10.1021/j100043a036
  11. C. W. Chen, D. Tano, and M. Akashi, Colloid Polym. Sci., 277, 488 (1999) https://doi.org/10.1007/s003960050414
  12. A. Dalmia, C. L. Lineken, and R. F. Savinell, J. Colloid Interf. Sci., 205, 535 (1998) https://doi.org/10.1006/jcis.1998.5719
  13. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. Ei-Sayed, Science, 272, 1924 (1996) https://doi.org/10.1126/science.272.5270.1924
  14. K. V. Sarathy, G. Raina, R. T. Yadav, G. U. Kulkarni, and C. N. R. Rao, J. Phys. Chem. B, 101, 9876 (1997) https://doi.org/10.1021/jp971544z
  15. J. Prabhuram, X. Wang, C. L. Hui, and I. -M. Hsing, J. Phys. Chem. B, 107, 11057 (2003) https://doi.org/10.1021/jp0357929
  16. U. A. Paulus, U. Endruschat, G. Feldmeyer, T. J. Schmidt, H. Bonnemann, and R. J. Behm, J. Catal., 195, 38 (2000) https://doi.org/10.1006/jcat.2000.2982
  17. K. A. Mauritz, and R. E. Moore, Chem. Rev., 104, 4535 (2004) https://doi.org/10.1021/cr0207123
  18. M. Alvaro, A. Corma, D. Das, V. Fornes, and H. Garcia, J. Catal., 231, 48 (2005) https://doi.org/10.1016/j.jcat.2005.01.007
  19. T. H. Han, D. O. Kim, Y. K. Lee, S. J. Suh, H. C. Jung, Y. S. Oh, and J.-D. Nam, Macromol. Rapid Commun., 27, 1483 (2006) https://doi.org/10.1002/marc.200600312
  20. Z. Liu, Z. Q. Tian, and S. P. Jiang, Electrchim. Acta, 56, 1213 (2006)
  21. P. -C. Lee, T. H. Han, D. O. Kim, J. -H. Lee, S.-J. Kang, C.-H. Chung, Y. Lee, S. M. Cho, T. Kim, E. Lee, and J.-D. Nam, J. Membr. Sci., 322, 441 (2008) https://doi.org/10.1016/j.memsci.2008.05.054
  22. C. -W. Chen, T. Takezako, K. Yamamoto, T. Serizawa, and M. Akashi, Colloid Surface A, 169, 107 (2000) https://doi.org/10.1016/S0927-7757(00)00422-2
  23. N. Toshima, K. Nakata, and H. Kitoh, Inorg. Chim. Acta, 265, 149 (1997) https://doi.org/10.1016/S0020-1693(97)05690-9
  24. J. Jang, J. Ha, and S. Kim, Marcromol. Res., 15, 154 (2007) https://doi.org/10.1007/BF03218767
  25. R. B. Moore and C. R. Martin, Macromolecules, 21, 1334 (1988) https://doi.org/10.1021/ma00183a025
  26. J. Halim, G. G. Scherer, and M. Stamm, Macromol. Chem. Phys., 195, 3783 (1994) https://doi.org/10.1002/macp.1994.021951204
  27. H. Uchida, Y. Mizuno, and M. Watanabe, J. Electrochem. Soc., 149, A682 (2002) https://doi.org/10.1149/1.1471539