ON $s\gamma$ -GENERALIZED SETS

Won Keun Min

ABSTRACT. In this paper, we introduce the notions of $s\gamma$ -generalized closed sets and $s\gamma$ -generalized sets, and investigate some properties for such notions.

1. Introduction

Generalized closed sets in a topological space were introduced by Levine in [2] and he investigated many of the extended properties of closed sets. In [3], Mashhourr et.al. introduced the notion of supratopological spaces which are generalized topological spaces. In [4], the author introduced the notion of $s\gamma$ -sets in a supratopological space. In this paper, we introduce the notion of $s\gamma$ -generalized closed (shortly $s\gamma$ -g-closed) sets which are generalized $s\gamma$ -closed sets in a supratopological space and study their properties. $s\gamma$ -generalized sets (shortly $s\gamma$ -g-sets) are also introduced and their properties are investigated.

2. Preliminaries

Let X be a nonempty set. A family $\tau \subset 2^X$ is called a supratopology on X [3] if $X \in \tau$ and τ is closed under arbitrary union. The pair (X,τ) is called a supratopological space. The members of τ are called supraopen sets. The complement of supraopen sets are called supraclosed sets. Let (X,τ) be a supratopological space and $S \subset X$. The supra-closure of S, denoted by scl(S), is the intersection of supraclosed sets including S. And the interior of S, denoted by sint(S), the union of supraopen sets included in S.

Definition 2.1 ([4]). Let (X, τ) be a supratopological space and let $S(x) = \{A \in \tau : x \in A\}$ for each $x \in X$. Then we call $\mathbf{S}_x = \{A \subset X : \text{there exists } \mu \subset S(x) \text{ such } x \in X : \mathbf{S}_x = \{A \in X : \mathbf{S}_x \times X : \mathbf{S}_x \in X : \mathbf{S}_x \in X : \mathbf{S}_x \in X : \mathbf{S}_x \in X : \mathbf{S}_x \times X : \mathbf{S}_x \in X : \mathbf{S}_x \times X : \mathbf{S}_x \in X : \mathbf{S}_x \times X : \mathbf{$

Received by the editors May 20, 2008. Revised January 2009. Accepted May 7, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54A20, 54C08.

Key words and phrases. generalized closed sets, $s\gamma$ -closed sets, $s\gamma^*$ -continuous, $s\gamma$ -generalized closed sets, $s\gamma$ -generalized sets.

that μ is finite and $\cap \mu \subset A$ } the supra-neighborhood filter at x.

A filter **F** on X supra-converges to x if **F** is finer than the supra-neighborhood filter \mathbf{S}_x .

Definition 2.2 ([4]). Let (X, τ) be a supratopological space. A subset U of X is called an $s\gamma$ -set in X if whenever a filter \mathbf{F} on X supra-converges to x and $x \in U$, then $U \in \mathbf{F}$.

The class of all $s\gamma$ -sets in X will be denoted by $s\gamma(X)$. In particular, The class of all $s\gamma$ -sets induced by the supratopology τ will be denoted by $s\gamma_{\tau}$.

Definition 2.3 ([4]). Let (X, τ) be a supratopological space and $A \subset X$.

$$sI_{\gamma}(A) = \bigcup \{U : U \subset A, \text{ U is an } s\gamma\text{-set }\}$$
 is the $s\gamma$ -interior of A .

$$scl_{\gamma}(A) = \{x \in X : A \cap U \neq \emptyset \text{ for all } U \in \mathbf{S}_x\} \text{ is the } s\gamma\text{-closure of } A.$$

Theorem 2.4 ([4]). Let (X, τ) be a supratopological space and $A \subset X$.

- (1) $sI_{\gamma}(A) \subset A$ and $A \subset scl_{\gamma}(A)$;
- (2) A is sy-set if and only if $A = sI_{\gamma}(A)$;
- (3) A is $s\gamma$ -closed if and only if $A = scl_{\gamma}A$;
- (4) $sI_{\gamma}(A) = X scl_{\gamma}(X A)$ and $scl_{\gamma}(A) = X sI_{\gamma}(X A)$.

Definition 2.5 ([4]). Let (X, τ) and (Y, μ) be supratopological spaces. A function $f: X \to Y$ is called $s\gamma^*$ if the inverse image of each $s\gamma$ -set of Y is an $s\gamma$ -set in X.

For $Y \subset X$, let $s\gamma_X(Y) = \{Y \cap U : U \in s\gamma(X)\}$; then we call $(Y, s\gamma_X(Y))$ a $s\gamma$ -subspace of (X, τ) . An element of $s\gamma_X(Y)$ is called an $s\gamma$ -set relative to Y. Let $A \subset Y$; then the $s\gamma$ -interior of A in an $s\gamma$ -subspace Y is denoted by $sint_{\gamma Y}(A)$ and the $s\gamma$ -closure of A in an $s\gamma$ -subspace Y is denoted by $scl_{\gamma Y}(A)$.

3. $s\gamma$ -generalized Closed Sets

Definition 3.1. Let (X, τ) be a supratopological space. A subset A of X is called an $s\gamma$ -generalized closed set (shortly $s\gamma$ -g-closed set) in X if $scl_{\gamma}A \subset U$ whenever $A \subset U$ and U is an $s\gamma$ -set.

Remark 3.2. Every $s\gamma$ -closed set is $s\gamma$ -g-closed but the converse is not true as the next example.

Example 3.3. Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, \{a, b, c\}, \{c, d\}, X\}$; then $S\gamma(X) = \{\emptyset, \{a, b, c\}, \{c\}, \{c, d\}, X\}$. Consider a set $A = \{a, d\}$. Since X is the only $s\gamma$ -set containing A, A is $s\gamma$ -g-closed but not $s\gamma$ -closed.

The following implications are obtained

supraclosed $\Rightarrow s\gamma$ -closed $\Rightarrow s\gamma$ -g-closed

Theorem 3.4. Let (X, τ) be a supratopological space. A set A is $s\gamma$ -g-closed iff $scl_{\gamma}A - A$ contains no nonempty $s\gamma$ -closed sets.

Proof. Suppose A is an $s\gamma$ -g-set and F is an $s\gamma$ -closed set such that $F \subset scl_{\gamma}A - A$. Since F^c is an $s\gamma$ -set and $A \subset F^c$, $scl_{\gamma}A \subset F^c$. Thus $F = \emptyset$.

For the converse, let $A \subset U$ for an $s\gamma$ -set U in X. If $scl_{\gamma}A$ is not contained in U, then $scl_{\gamma}A \cap U^c \neq \emptyset$. It is a contradiction since $scl_{\gamma}A \cap U^c \subset scl_{\gamma}A - A$.

Corollary 3.5. Let (X, τ) be a supratopological space and let A be an $s\gamma$ -g-closed set. Then a set A is $s\gamma$ -closed iff $scl_{\gamma}A - A$ is $s\gamma$ -closed.

Proof. Suppose A is an $s\gamma$ -closed set, then $scl_{\gamma}(A) = A$, so $scl_{\gamma}(A) - A = \emptyset$ is $s\gamma$ -closed.

Suppose that $scl_{\gamma}(A) - A$ is $s\gamma$ -closed. Since A is $s\gamma$ -g-closed, by Theorem 3.4, $scl_{\gamma}(A) - A = \emptyset$, so we get $scl_{\gamma}(A) = A$.

Theorem 3.6. Let (X, τ) be a supratopological space. If both A and B are $s\gamma$ -g-closed sets, then $A \cup B$ is $s\gamma$ -g-closed.

Proof. Let $A \cup B \subset U$ for $U \in S\gamma(X)$; then since $scl_{\gamma}(A \cup B) = scl_{\gamma}(A) \cup scl_{\gamma}(B) \subset U$, so $A \cup B$ is an $s\gamma$ -g-closed set.

The intersection of two $s\gamma$ -g-closed sets is generally not an $s\gamma$ -g-closed set as the next example.

Example 3.7. As Example 3.3, let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, b, c\}, \{c, d\}, X\}$; then $S\gamma(X) = \{\emptyset, \{a, b, c\}, \{c\}, \{c, d\}, X\}$. Consider two $s\gamma$ -g-closed sets $A = \{a, c, d\}$ and $B = \{b, c, d\}$. Since $scl_{\gamma}\{c, d\} = X$, $A \cap B$ is not $s\gamma$ -g-closed.

Theorem 3.8. Let (X, τ) be a supratopological space, $B \subset Y \subset X$. If B is an $s\gamma$ -g-closed set relative to Y and if Y is $s\gamma$ -g-closed in X, then B is $s\gamma$ -g-closed in X.

Proof. Let $B \subset U$ and let U be an $s\gamma$ -set in X; then $scl_{\gamma Y}(B) \subset Y \cap U$, so $scl_{\gamma Y}(B) = Y \cap scl_{\gamma}(B) \subset Y \cap U$ and $Y \subset (scl_{\gamma}(B))^c \cup U$. Since Y is an $s\gamma$ -g-closed set in X, $scl_{\gamma}(B) \subset scl_{\gamma}(Y) \subset U \cup (scl_{\gamma}(B))^c$, and so $scl_{\gamma}(B) \subset U$.

From Theorem 3.8 we get the next corollary.

Corollary 3.9. If A is an $s\gamma$ -g-closed set and if F is an $s\gamma$ -set, then $A \cap F$ is an $s\gamma$ -g-closed set.

Theorem 3.10. Let (X, τ) be a supratopological space. If A is $s\gamma$ -g-closed and $A \subset B \subset scl_{\gamma}(A)$, then B is $s\gamma$ -g-closed.

Proof. Since $scl_{\gamma}(B) - B \subset scl_{\gamma}(A) - A$, $scl_{\gamma}(B) - B$ has no a nonempty $s\gamma$ -closed subset. Thus by Theorem 3.4, B is $s\gamma$ -g-closed.

Theorem 3.11. Let (X, τ) be a supratopological space and $A \subset Y \subset X$. If A is $s\gamma$ -g-closed in X, then A is an $s\gamma$ -g-closed set relative to Y.

Proof. Let $A \subset Y \cap U$ and let U be an $s\gamma$ -closed set in X; then $scl_{\gamma}A \subset U$. It follows that $scl_{\gamma}Y(A) = Y \cap scl_{\gamma}(A) \subset Y \cap U$.

4. $s\gamma$ -generalized Sets

Definition 4.1. Let (X, τ) be a supratopological space. A subset U of X is called an $s\gamma$ -generalized set (shortly $s\gamma$ -g-set) in X if the complement of U (shortly U^c) is an $s\gamma$ -g-closed set.

The class of all $s\gamma$ -g-sets in X will be denoted by $s\gamma q(X)$.

Remark 4.2. In a supratopological space (X, τ) , it is always true that

$$\tau \subset s\gamma(X) \subset s\gamma g(X)$$
.

From Definition 3.1, we get the following theorem.

Theorem 4.3. A set A is an $s\gamma$ -g-set iff $F \subset sI_{\gamma}A$ whenever F is $s\gamma$ -closed and $F \subset A$.

Theorem 4.4. Let (X, τ) be a supratopological space. A set A is an $s\gamma$ -g-set of X iff U = X whenever U is an $s\gamma$ -set and $sI_{\gamma}U \cup A^c \subset U$.

Proof. Suppose that U is an $s\gamma$ -set and $sI_{\gamma}U \cup A^c \subset U$. Then $U^c \subset scl_{\gamma}(A^c) \cap A = scl_{\gamma}(A^c) - A^c$. Since U^c is an $s\gamma$ -closed set and A^c is $s\gamma$ -g-closed, by Theorem 3.4, we get $U^c = \emptyset$, so X = U.

Suppose that F is an $s\gamma$ -closed set and $F \subset A$. Then $sI_{\gamma}A \cup A^c \subset sI_{\gamma}A \cup F^c$ and so $sI_{\gamma}A \cup F^c = X$. It follows that $F \subset sI_{\gamma}A$.

Let (X, τ) be a supratopological space and A, B be nonempty subsets of X. Then A and B are said to be $s\gamma$ -separated if $A \cap scl_{\gamma}B = scl_{\gamma}A \cap B = \emptyset$.

Theorem 4.5. Let (X, τ) be a supratopological space and let A, B be nonempty $s\gamma$ -separated subsets of X. If both A and B are $s\gamma$ -g-sets, then $A \cup B$ is an $s\gamma$ -g-set.

Proof. Let F be an $s\gamma$ -closed set of $A \cup B$; then $F \cap scl_{\gamma}A \subset A$ and by Theorem 4.3, $F \cap scl_{\gamma}A \subset sI_{\gamma}A$. In the same manner, we have $F \cap scl_{\gamma}B \subset sI_{\gamma}B$. Thus

 $F = F \cap (A \cup B) \subset sI_{\gamma}A \cup sI_{\gamma}B \subset sI_{\gamma}(A \cup B)$, so by Theorem 4.3, $A \cup B$ is an $s\gamma$ -g-set.

From Theorem 4.5 we get the following:

Corollary 4.6. Let A and B be two $s\gamma$ -g-closed sets. If both A^c and B^c are $s\gamma$ -separated, then $A \cap B$ is $s\gamma$ -g-closed.

Theorem 4.7. Let (X, τ) be a supratopological space. If $A \subset Y \subset X$ where A is an $s\gamma$ -g-set relative to Y and if Y is an $s\gamma$ -g-set in X, then A is an $s\gamma$ -g-set in X.

Proof. Let F be an $s\gamma$ -closed set in X and $F \subset A$. Then F is $s\gamma$ -closed relative to Y, so $F \subset sI_{\gamma Y}A$. Thus there exists an $s\gamma$ -set U in X such that $F \subset U \cap Y \subset sI_{\gamma Y}A \subset A$ and $F \subset sI_{\gamma}Y \subset Y$ since Y is an $s\gamma$ -g-set in X. Thus $F \subset sI_{\gamma}A$. From Theorem 4.3, A is an $s\gamma$ -g-set in X.

Theorem 4.8. If A is an $s\gamma$ -g-set and $sI_{\gamma}A \subset B \subset A$, then B is an $s\gamma$ -g-set.

Proof. $A^c \subset B^c \subset scl_{\gamma}(A^c)$ and since A^c is an $s\gamma$ -g-closed set, it follows that B^c is an $s\gamma$ -g-closed set. Thus B is an $s\gamma$ -g-set.

Theorem 4.9. A set A is $s\gamma$ -g-closed iff $scl_{\gamma}A - A$ is an $s\gamma$ -g-set.

Proof. Suppose that A is an $s\gamma$ -g-closed subset and $F \subset scl_{\gamma}A - A$, where F is $s\gamma$ -closed. Then by Theorem 3.4, $F = \emptyset$ and hence $F \subset sI_{\gamma}(scl_{\gamma}A - A)$. Thus we get $scl_{\gamma}A - A$ is an $s\gamma$ -g-set.

Suppose $A \subset U$ where U is an $s\gamma$ -set. Then $scl_{\gamma}A \cap U^c \subset scl_{\gamma}A \cap A^c = scl_{\gamma}A - A$ and since $scl_{\gamma}A \cap U^c$ is $s\gamma$ -closed and $scl_{\gamma}A - A$ is an $s\gamma$ -g-set, it follows that $scl_{\gamma}A \cap U^c \subset sl_{\gamma}(scl_{\gamma}A \cap A^c) = \emptyset$. Therefore $scl_{\gamma}A \subset U$. Thus A is $s\gamma$ -g-closed. \square

Definition 4.10. For two supratopological spaces (X, τ) and (Y, μ) , a function $f: (X, \tau) \to (Y, \mu)$ is $s\gamma^*$ -closed if for every $s\gamma$ -closed set G in X, f(G) is $s\gamma$ -closed in Y.

Theorem 4.11. Let $f: X \to Y$ be an $s\gamma^*$ -continuous and $s\gamma^*$ -closed function between supratopological spaces. If A is an $s\gamma$ -g-closed set in X, then f(A) is $s\gamma$ -g-closed in Y.

Proof. Let $f(A) \subset U$ where U is an $s\gamma$ -set in Y; then $A \subset f^{-1}(U)$ and hence $scl_{\gamma}A \subset f^{-1}(U)$. Thus $f(scl_{\gamma}A) \subset U$ and $f(scl_{\gamma}A)$ is an $s\gamma$ -closed set. It follows that $scl_{\gamma}f(A) \subset scl_{\gamma}f(scl_{\gamma}A) \subset f(scl_{\gamma}A) \subset U$. Then f(A) is an $s\gamma$ -g-closed set in Y.

Let $(X, \tau), (Y, \mu)$ be supratopological spaces. We recall that a function $f: X \to Y$

is $s\gamma^*$ -continuous iff $f(scl_{\gamma\tau}(U)) \subset scl_{\gamma\mu}(f(U))$, for every $U \subset X$ [4].

Theorem 4.12. Let $f: X \to Y$ be a function between supratopological spaces and let f be $s\gamma^*$ -continuous and $s\gamma^*$ -closed. If B is an $s\gamma$ -g-closed set in Y, then $f^{-1}(B)$ is $s\gamma$ -g-closed in X.

Proof. Let B be an $s\gamma-g$ -closed set in Y and $f^{-1}(B) \subset U$ where U is an $s\gamma$ -set in X. Then since U is an $s\gamma$ -set, $scl_{\gamma}(f^{-1}(B)) \cap U^c$ is $s\gamma$ -closed and $f(scl_{\gamma}(f^{-1}(B)) \cap U^c)$ is also $s\gamma$ -closed by Definition 4.11. Since f is an $s\gamma^*$ -continuous function, we get the following:

$$f(scl_{\gamma}(f^{-1}(B)) \cap U^{c}) \subset f(scl_{\gamma}(f^{-1}(B))) \cap f(U^{c})$$

$$\subset scl_{\gamma}f(f^{-1}(B)) \cap f(U^{c})$$

$$\subset scl_{\gamma}(B) \cap f(U^{c})$$

$$\subset scl_{\gamma}B - B.$$

Since $f(scl_{\gamma}(f^{-1}(B)) \cap U^c)$ is an $s\gamma$ -closed set, from Theorem 3.4 it follows $f(scl_{\gamma}(f^{-1}(B)) \cap U^c) = \emptyset$, i.e., $scl_{\gamma}(f^{-1}(B)) \cap U^c = \emptyset$. Hence $f^{-1}(B)$ is an $s\gamma - g$ -closed set.

REFERENCES

- 1. N. Levine: Semi-open sets and semi-continuity in topological spaces. Am. Math. Monthly **70** (1963), 36-41.
- 2. _____: Generalized closed sets in topolog. Rend. Cir. Mat. Palermo 19 (1970), no. 2., 89-96.
- A.S. Mashhourr, A.A. Allam, F.S. Mahmoud & F.H. Khadr: On Supratopological Spaces. Indian J. Pure Appl. Math. 14 (1983), no. 4, 502-510.
- 4. W.K. Min: On Supra-Convergence of Filters. Indian J. Pure Appl. Math. 34 (2003), no. 12, 1719-1726.

DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY, CHUNCHEON 200-701, KOREA

Email address: wkmin@kangwon.ac.kr