DOI QR코드

DOI QR Code

Structural Characteristics of Immunostimulating Polysaccharides from Lentinus edodes

  • Lee, Hee-Hwan (Department of Bioengineering and Technology, Kangwon National University) ;
  • Lee, Jong-Seok (Department of Bioengineering and Technology, Kangwon National University) ;
  • Cho, Jae-Yeol (School of Bioscience and Biotechnology, and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Kim, Young-Eon (Korea Food Research Institute) ;
  • Hong, Eock-Kee (Department of Bioengineering and Technology, Kangwon National University)
  • Published : 2009.05.31

Abstract

There is a significant amount of experimental evidence suggesting that polysaccharides from mushrooms enhance the host immune system by activating various mechanisms in immune cells, including macrophages. In this study, polysaccharides from Lentinus edodes were found to stimulate the functional activation of macrophages to secrete inflammatory mediators and cytokines and increase the phagocytotic uptake. The chemical properties of the stimulatory polysaccharides, CPFN-G-I, CPBN-G, and CPBA-G, were determined based on their monosaccharide composition, which mainly consisted of glucose and mannose. According to FT-IR and GC/MS, the structure of CPFN-G-I, purified from the fruiting body of L. edodes, was found to consist of a $\beta$-1,6-branched-$\beta$-1,4-glucan, whereas CPBN-G and CPBA-G, purified from the liquid culture broth, were found to be composed of a heteromannan. The configuration of the p-linkage and triple helical conformation of each polysaccharide were confirmed using a Fungi-Fluor kit and Congo red, respectively.

Keywords

References

  1. Benzamini, E. and S. Leskowitz. 1991. Immunology: A Short Course pp. 51-58. Wiley-Liss Inc
  2. Blumenkrantz, N. and G. Asboe-Hansen. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. 54:484-489 https://doi.org/10.1016/0003-2697(73)90377-1
  3. Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Carmichael, J., W. G. DeGraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchell. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 47: 936-942
  5. Cha, W. S., M. Y. Lee, B. S. Cho, and S. Y. Park. 2004. A study on the composition of seasoning using Lentinus edodes. J. Life Sci. 14: 829-833 https://doi.org/10.5352/JLS.2004.14.5.829
  6. Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate Analysis. A Practical Approach. Oxford IRL Press
  7. Ohno, N., N. N. Miura, N. Chiba, Y. Adachi, and T. Yadomae. 1995. Comparison of the immunopharmacological activities of triple and single-helical schizophyllan in mice. Biol. Pharm. Bull. 18: 1242-1247 https://doi.org/10.1248/bpb.18.1242
  8. Cho, J. Y., K. U. Baik, J. H. Jung, and M. H. Park. 2000. In vitro anti- nflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur. J. Pharmacol. 398: 399-407 https://doi.org/10.1016/S0014-2999(00)00337-X
  9. Choi, D. B., S. S. Park, J. L. Ding, and W. S. Cha. 2007. Effects of Fomitopsis pinicola extracts on antioxidants and antitumor activities. Biotechnol. Bioprocess Eng. 5: 516-524 https://doi.org/10.1007/BF02931349
  10. Ciucanu, I. and F. Kerek. 1984. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131: 209-217 https://doi.org/10.1016/0008-6215(84)85242-8
  11. Dennert, G. and D. Tucker. 1973. Antitumor polysaccharide lentinan. A T cell adjuvant. J. Natl. Cancer Inst. 51: 1727-1729 https://doi.org/10.1093/jnci/51.5.1727
  12. Dische, Z. 1962. Color reactions of hexosamines. pp. 507-512. In: Methods in Carbohydrate Chemistry I. Academic Press
  13. Duperrier, K., A. Eljaafari, C. Dezutter-Dambuyant, C. Bardin, C. Jacquet, K. Yoneda, D. Schmitt, L. Gebuhrer, and D. Rigal. 2000. Distinct subsets of dendritic cells resembling dermal DCs can be generated in vitro from monocytes, in the presence of different serum supplements. J. Immunol. Methods 238: 119-131 https://doi.org/10.1016/S0022-1759(00)00147-2
  14. Franz, G. 1989. Polysaccharides in pharmacy: Current applications and future concepts. Planta Med. 55: 493-497 https://doi.org/10.1055/s-2006-962078
  15. Girotti, M., J. H. Evans, D. Burke, and C. C. Leslie. 2004. Cytosolic phospholipase A2 translocates to forming phagosomes during phagocytosis of zymosan in macrophages. J. Biol. Chem. 279: 19113-19121 https://doi.org/10.1074/jbc.M313867200
  16. Hamuro, J. and G. Chihara. 1984. Lentinan, a T-cell oriented immunopotentiator, pp. 409-436. In R. L. Fenichel (ed.). Modulation Agents and their Mechanisms. Marcel Dekker, Inc. New York and Basel
  17. Hamuro, J. and H. Wagner. 1978. $\beta$-1,3-Glucan-mediated augmentation of alloreactive murine cytotoxic T-lymphocytes in vivo. Cancer Res. 38: 3080-3085
  18. Han, M. D., E. S. Lee, Y. K. Kim, J. W. Lee, H. Jeong, and K. H. Yoon. 1998. Production of nitric oxide in RAW 264.7 macrophages treated with ganoderan, the beta-glucan of Ganoderma lucidium. Kor. J. Mycol. 26: 246-255
  19. Han, M. D., J. W. Lee, H. Jeong, S. K. Chung, S. Y. Lee, and K. H. Yoon. 1995. The effect of carbon sources on antitumor and anticomplementary activities of Ganoderma lucidium IY009. Kor. J. Mycol. 23: 209-225
  20. Hibbs Jr., J. B. 1976. The macrophages as tumoricidal effector cells: A review of in vivo and in vitro studies on the mechanism of the activated macrophages nonspecific cytotoxic reaction, pp. 83-91. In M. A. Fink (ed.). The Macrophages in Neoplasia. Academic Press, New York
  21. Hyde, K. D., E. B. G. Jones, and S. T. Moss. 1986. Mycellial adhesion to surfaces, pp. 331-340. In S. T. Moss (ed.). The Biology of the Marine Fungi. Cambridge University Press, Cambridge
  22. Lee, D. G., J. W. Hyun, K. A. Kang, J. O. Lee, S. H. Lee, B. J. Ha, J. M. Ha, E. Y. Lee, and J. H. Lee. 2004. Ulva lactuca: A potential seaweed for tumor treatment and immune stimulation. Biotechnol. Bioprocess Eng. 3: 236-238 https://doi.org/10.1007/BF02942299
  23. Lee, J. Y., J. Y. Kim, Y. G. Lee, M. H. Rhee, E. K. Hong, and J. Y. Cho. 2008. Molecular mechanism of macrophage activation by exopolysaccharides from liquid culture of Lentinus edodes. J. Microbiol. Biotechnol. 18: 355-364
  24. MacMicking, J., Q. W. Xie, and C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323-350 https://doi.org/10.1146/annurev.immunol.15.1.323
  25. Nathan, C. F., S. C. Silverstein, L. H. Brukner, and Z. A. Cohn. 1979. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J. Exp. Med. 149: 100-113 https://doi.org/10.1084/jem.149.1.100
  26. Ogawa, K., J. Tsurugi, and T. Watanabe. 1973. The dependence of the conformation of a (1$\rightarrow$3)-$\beta$-D-glucan on chain-length in alkaline solution. Carbohydr. Res. 29: 397-403 https://doi.org/10.1016/S0008-6215(00)83025-6
  27. Ogawa, K. and M. Hatano. 1978. Circular dichroism of the complex of a (1$\rightarrow$3)-$\beta$-D-glucan with Congo red. Carbohydr. Res. 67: 527-535 https://doi.org/10.1016/S0008-6215(00)84144-0
  28. Rolf, D. and G. R. Gray. 1982. Reductive cleavage of glycosides. J. Am. Chem. Soc. 104: 3539-3541 https://doi.org/10.1021/ja00376a065
  29. Ryu, K., K. Y. Lee, and E. K. Lee. 2001. The structure analysis and biosynthesis of $\beta$-glucan by Alcaligenes faecalis. Kor. J. Biotechnol. Bioeng. 16: 409-414
  30. Shu, C. H., B. J. Wen, and K. J. Lin. 2003. Monitoring the polysaccharide quality of Agaricus blazei in submerged culture by examining molecular weight distribution and TNF-α release capability of macrophage cell line RAW 264.7. Biotechnol. Lett. 25: 2061-2064 https://doi.org/10.1023/B:BILE.0000007066.00221.b9
  31. Stuehr, D. J. and C. F. Nathan. 1989. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169: 1543-1555 https://doi.org/10.1084/jem.169.5.1543
  32. Takahashi, K., M. Yamazaki, and S. Abe. 1988. Local induction of a tumor necrosis factor (TNF)-like cytotoxic factor in murine tissues with tumorous and nontumorous inflammation after systemic administration of antitumor polysaccharides. J. Pharmacobiodyn. 11: 472-478 https://doi.org/10.1248/bpb1978.11.472
  33. Tamura, R., K. Tanebe, C. Kawanishi, K. Torii, and T. Ono. 1997. Effects of lentinan on abnormal ingestive behaviors induced by tumor necrosis factor. Physiol. Behav. 61: 399-410 https://doi.org/10.1016/S0031-9384(96)00451-9
  34. Yadomae, T. and N. Ohno. 1996. Structure-activity relationship of immunomodulating (1-3)-$\beta$-D-glucan. Recent Res. Dev. Chem. Pharm. Sci. 1:23-33

Cited by

  1. Rapid determination of polysaccharides in BianTi Soft Extract by spectrophotometry coupled with gas chromatography-mass spectrometry vol.6, pp.22, 2009, https://doi.org/10.4103/0973-1296.62895
  2. Influence of shiitake mushroom Lentinula edodes on reproduction of Drosophila melanogaster vol.64, pp.5, 2009, https://doi.org/10.2478/v10046-010-0008-2
  3. Influence of shiitake mushroom Lentinula edodes on reproduction of Drosophila melanogaster vol.64, pp.5, 2009, https://doi.org/10.2478/v10046-010-0008-2
  4. Molecular Mechanism of Macrophage Activation by Red Ginseng Acidic Polysaccharide from Korean Red Ginseng vol.2012, pp.None, 2009, https://doi.org/10.1155/2012/732860
  5. Isolation of the intracellular and extracellular polysaccharides of Ganoderma neojaponicum (Imazeki) and characterization of their immunomodulatory properties vol.18, pp.3, 2009, https://doi.org/10.1016/j.ejbt.2015.03.006
  6. Lentinan exerts synergistic apoptotic effects with paclitaxel in A549 cells via activating ROS-TXNIP-NLRP3 inflammasome vol.19, pp.8, 2009, https://doi.org/10.1111/jcmm.12570
  7. β-(1→3),(1→6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons vol.99, pp.19, 2009, https://doi.org/10.1007/s00253-015-6849-x
  8. Structural Characterization and Immunomodulatory Activity of a Novel Polysaccharide from Lepidium meyenii vol.64, pp.9, 2009, https://doi.org/10.1021/acs.jafc.5b05610
  9. In vivo anticancer and immunomodulating activities of mannogalactoglucan-type polysaccharides from Lentinus edodes (Berkeley) Singer vol.41, pp.1, 2009, https://doi.org/10.5114/ceji.2015.56962
  10. Structural Characterization of a Novel Polysaccharide from Lepidium meyenii (Maca) and Analysis of Its Regulatory Function in Macrophage Polarization in Vitro vol.65, pp.6, 2017, https://doi.org/10.1021/acs.jafc.6b05218
  11. Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of Treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice vol.17, pp.None, 2017, https://doi.org/10.1186/s12906-016-1551-9
  12. Structural Variation and Microrheological Properties of a Homogeneous Polysaccharide from Wheat Germ vol.66, pp.11, 2018, https://doi.org/10.1021/acs.jafc.7b04730
  13. Simple method for the determination of polysaccharides in herbal syrup vol.37, pp.7, 2009, https://doi.org/10.1080/07328303.2019.1567754
  14. Structural Characterization and Immunomodulatory Activity of a Polysaccharide from Eurycoma longifolia vol.82, pp.2, 2019, https://doi.org/10.1021/acs.jnatprod.8b00238
  15. Analysis of the diversity of the glycoside hydrolase family 130 in mammal gut microbiomes reveals a novel mannoside-phosphorylase function vol.6, pp.10, 2009, https://doi.org/10.1099/mgen.0.000404
  16. Understanding immune-modulatory efficacy in vitro vol.352, pp.None, 2009, https://doi.org/10.1016/j.cbi.2021.109776