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Abstract

We introduce the concepts of interval-valued fuzzy M -continuity and interval-valued fuzzy M* (A)-open mappings.
And we study some characterizations and basic properties of such functions.

Key words : interval-valued fuzzy minimal spaces, IVF M -continuous functions, [IVF M *-open mapping, IVF M -open

mapping

1. Introduction and preliminaries

Zadeh [5] introduced the concept of fuzzy set and sev-
eral researchers were concerned about the generalizations
of the concept of fuzzy sets, intuitionistic fuzzy sets [1] and
interval-valued fuzzy sets {3].

In [2], Alimohammady and Roohi introduced fuzzy
minimal structures and fuzzy minimal spaces and some re-
sults are given. In this paper, we introduce the concept of
interval valued fuzzy minimal structure (simply, [VF min-
imal structure) as a generalization of interval-valued fuzzy
topology introduced by Mondal and Samanta [6]. In {5],
we infroduced the concepts of IVF m-continuity and IVF
m-compactness and we studied some results about them.
In this paper, we introduce the concepts of interval-valued
fuzzy M-continuity and interval-valued fuzzy M*-open
mappings defined on interval-valued fuzzy minimal spaces.
And we study some characterizations and basic properties
of such functions.

Let D[0, 1] be the set of all closed subintervals of the in-
terval [0, 1]. The elements of D[0, 1] are generally denoted
by capital letters M, N, - - - and note that M = [M* MY,
where ML and MY are the lower and the upper end points
respectively. Especially, we denote 0 = [0,0],1 = [1,1],
and a = |a, a] for a € (0,1). We also note that

1. (YM,N € D[0.1))(M = N & M+ = NL MV =
N,

2. (YM,N € D[0,1))(M < N < ML < NE MY
NUY.

IA

For every M ¢ D0, 1], the complement of M, denoted by
M¢ isdefinedby M¢=1- M = [t — MY, 1 - M*].
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Let X be a nonempty set. A mapping A : X — DI[0,1]
is called an interval-valued fuzzy set (simply, IVF set} in
X. Foreach x € X, A(z) is a closed interval whose lower
and upper end points are denoted by A(z)% and A(z)Y,
respectively. For any [a,b] € DI[0, 1], the IVF set whose
value is the interval [a, b] for all z € X is denoted by [a, b].
In particular, for any ¢ € [a,b], the IVF set whose value
is a = [a,a] for all 2 X is denoted by simply a. For a
point p € X and for [a,b] € D0, 1] with b > 0, the IVF
set which takes the value [a, b] at p and 0 elsewhere in X
is called an interval-valued fuzzy point (simply, IVF point)
and is denoted by [a, b],. In particular, if b = a, then it is
also denoted by a,,. Denoted by IVF(X) the set of all IVF
sets in X.

For every A, B € IV F{X), we define

A=Be (v e X)([A@)]F = [Bz)*

and
[A(2)]Y = [B(@)]"),

AC B (Ve X)([A)* < [Bx)]

and
[A@@)]Y < [B(a)]").

The complement A° of A is defined by
A)]E = 1 — [A@)]Vand [A@)]Y = 1 - [A@))"

forallz € X.
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For a family of IVF sets {A4; : ¢ € J} where J is an
index set, the union G = U;c;A4; and F' = Ny s A; are
defined by

(Vz € X) ([G(@)]F = sup;e s [Ai(2)] .

[G(2)]Y = sup,c ;[As(2)]").
(Vz € X) ([F(2)]* = infie s [A; (2))F,
[F(2))Y = infie s [Ai(2)]").
respectively.
Let f : X — Y be a mapping and let A be an IVF set

in X. Then the image of A under f, denoted by f(A), is
defined as follows

0, otherwise .

[FA)))- = { SUP 4 gy [A(2)] -,

[F(A) )7 = { SUP () =y [A(2)]. T y) £ 0.y eV

0, otherwise .

forally e Y.

Let B be an IVF set in Y. Then the inverse image of B
under f, denoted by f~(B), is defined as follows

(Vo € X)([f7H(B)(@)]" = [B(F(2)]",
B @) = [B(f()]").

Definition 1.1 ([6]). A family 7 of IVF sets in X is called
an interval-valued fuzzy topology on X if it satisfies:
(1Ho,1&r.
YA, Ber=ANBer.
(3)F0ri € J, A €7 = Uje A €T

Every member of 7 is called an IVF open set. An IVF
set A is called an IVF closed set if the complement of A is
an IVF open set. And (X, 7) is called an interval-valued
fuzzy topological space.

In an IVF topological space (X, 7), for an IVF set A in
X, the IVF closure and the IVF interior of A, denoted by
Cl(A) and Int(A), respectively, are defined as

Cl(A)=N{BeIVF(X): B erand AC B),
Int(A)=U{Be€IVF(X): Berand BC A}

Let (X, 7) be an IVF topological space. An IVF set A
in X is said to be IVF compact if every IVF open cover
A = {A; : ¢ € J} of B has a finite IVF subcover.
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And an IVF set A in X is said to be almost IVF com-
pact (resp., nearly IVF compact) if for every IVF open
cover A = {A; : i € J} of B, there exists Jy =
{1.2.---.n} C J such that A C U,;e;,CI(A;) (resp.,
AC U,ieJ()[nt(C'l(Ai))).

Definition 1.2 ([4]). An IVF set A in an IVF topological
space (X, 7) is called

(1) an IVF semiopen set in X if there exists B € 7 such
that B C A C CI(B));

(2) an IVF preopen set in X if A C Int(Cl(A));

(3) an IVF a-open set in X if A C Int(Cl(Int(A)))).

And an IVF set A is called an IVF semiclosed (resp.,
IVF preclosed, IVF a-closed) set if the complement of A
is an IVF semiopen (resp., IVF preopen, IVF a-open) set.
Denoted by IVESO(X) (resp., IVFPO(X), IVFa(X)) the set
of all IVF semiopen (resp., IVF preopen, IVF o-open) sets.

if f71(y) # 0, y € Y Denoted by IVFSC(X) (resp., IVFPC(X), IVFaC(X)) the

set of all IVF semiclosed (resp., IVF preclosed, IVF a-
closed) sets.

Definition 1.3 ([5]). A family M of interval-valued fuzzy
sets in X is called an interval-valued fuzzy minimal struc-

ture on X if
0,1 M.

In this case, (X, M) is called an interval-valued fuzzy min-
imal space (simply, IVF minimal space). Every member
of M is called an IVF m-open set. An IVF set A is called
an IVF m-closed set if the complement of A (simply, A°)
is an IVF m-open set.

Let (X,7) be an IVF topological space. Then T,
IVFSO(X), IVFSC(X), IVFPO(X) and IVFPC(X) are all
interval-valued fuzzy minimal spaces.

Let (X, M) be an IVF minimal space and A in IVF(X).
The IVF minimal-closure and the IVF minimal-interior of
A [5], denoted by mC1(A) and mInt(A), respectively, are
defined as

mClUA) =N{B e IVF(X): B¢ Mand A C B},

mint(A) =U{B e IVF(X): Be Mand B C A}.

Theorem 1.4 ([5]). Let (X, M) be an IVF minimal space
and A, B in IVF(X).

(1) mInt(A) C A and if A is an IVF m-open set, then
mint(A) = A.

(2) A € mCI(A) andif A is an IVF m-closed set, then
mCI(A) = A.

B3 If A C B, then mInt(A) C miInt(B) and
mCl(A) C mCIl(B).

@) mInt(4A) NmInt(B) > mInt(AN B) and
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mCl{A) UmCl(B) C mCI{AU B).

(5) mInt(mInt(A)) = mInt(A) and

mCl(mCI(A)) = mCI(A).

(6) 1 = mCIl(A) = mInt(1— A)and 1 — mint(A) =
mCl(1 — A).

2. IVF M -continuous functions and IVF
M7 -open mappings

Definition 2.1. Let (X, Mx) be an IVF minimal space
and let (Y, 7) be an [VF topological space. Then f : X —
Y is said to be interval-valued fuzzy M-continuous (simply,
IVF M-continuous) if for every A € 7, f~1(A) is in M.

Theorem 2.2. Let f : X — Y be a function on an IVF
minimal space (X, Mx) and an IVF topological space
(Y, 7). Then we have the following:

(1) f is IVF M -continuous.

(2) f~Y(B) is an IVF m-closed set, for each IVF closed
set BinY'.

(3) f(mCl(A)) € CU ( )) for A € IVF(X).

(@nwﬂ( Y(B))c ())mpBEIVF&W

) fHInt(B)) € mInt(f~(B)) for B ¢
IVE(Y).

Then (1) & (2) = (3) & (4) & (5).

Proof. (1) < (2) Obvious.
(2)= (3)For A € IVF(X),

FHCHF(A)) = - A(F € IVF(X
and F is an IVF closed set}) = N{ [~
A C f7Y(F)and F is an IVF closed set } O N{K ¢
IVF(X) : A C K and K is an IVF m-closed set}
= mCI(A).

Hence f(mCI(A)) C CI(f(A)).
(3) = (4) Let B € IVF(Y). From (3) it follows that
FnCUf=H(B))) € CUf(fH(B))) € CUB).

Hence we get (4). Similarly, we get (4) = (3).

) (A CF
YF) e IVF(X) :

(4) < (5) From Theorem 1.4, it is obvious. O

Example 2.3. Let X = {a,b}. Let A, B and C be IVF
sets defined as follows
[0.2,0.5],

Ala) = [0.1,0.6], A(b) =
[ 0.3,0.4),

Bla) = [0.2,0.5], B(b) =

Cla) =1[0.2,0.6].C(b) = [0.3,0.5].

Note C = A U B. Consider an 1VF m-structure
Mx = {0, A, B, X} and an IVF topological space T =
{0,A,B,C,X}. Let f: (X, Mx) — (X,7) be a func-
tion defined as follows f(x) = x for each x € X. Then f
satisfies the condition (S) in Theorem 2.2, but it is not IVF
M -continuous because C'is not in M x.

Corollary 2.4. Let f : X — Y be a function on an
[VF minimal space (X, M x ) and an [VF topological space
(Y, 7). Then the following equivalent:

(1) f(A) C CI(f(A)) for each IVF m-closed set A in

X.

(2) fHEF) = mCI(f~*(F)) for each IVF closed set
FinY.

(3) f~HB) = miInt(f~(B)) for each IVF open set
BinY.
Proof. Obvious. O

Definition 2.5. Let M x be an IVF minimal structure on
X. Then M x said to have property (B) if the union of any
family of TVF sets belong to M x belongs to M x.

Remark 2.6. IVFSO(X), IVEPO(X) and IVFo(X) are all
IVF minimal structures on X with property (8} in an IVF
topological space (X, 7).

Lemma 2.7. Let M x be an IVF minimal structure on X.
Then the following are equivalent.
(1) M x has property (5).
() If mInt(B) = B, then B € Mx.
B)UmCIF)=F,then X — F € Mx.

Proof. Obvious. O

Corollary 2.8. Let f : X — Y be a function on an IVF
minimal space (X, M) and an IVF topological space
(Y,7). If Mx has property (5}, then the following are
equivalent:

(1) f is IVF M-continuous.

(2) f~1(B) is an IVF m-closed set, for each IVF closed
set BinY.

(3) f(mCI(A)) C C1I (f( ))for Ac IVF(X).

(4) mCl ( YB)) C fH(CUB)) for Be IVF(Y).

(5) f~'(Int(B)) < wmInt(f1(B)) for B €
IVF(Y).
Proof. By Lemma 2.7, it is obvious. O
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Definition 2.9. Let (X, Mx) be an IVF minimal space
and (Y, 7) be an IVF topological space. Then f : X — YV
is called an interval-valued fuzzy M*-open (simply, IVF
M*-open) mapping if for every IVF m-open set 4 in X,
f(A)isIVF openin Y.

Theorem 2.10. Let f : X — Y be a function on an
IVF minimal space (X, M x ) and an IVF topological space
(Y, 7). Then the following are equivalent:

(1) f is IVF M*-open.

(2) f(mInt(A)) C Int(f(A)) for A € IVF(X).

(3) mint(f~Y(B)) < f'(Int(B)) for B €
IVF(Y).

Proof. (1) = (2) For A € IVF(X),

f(mInt(A)) = f(U{B € IVF(X): B C A,Bis
an IVF m-open set }) = U{f(B) € IVF(X) : f(B) C
f(A), f(B) is an IVF open set } C U{U € IVF(X) :
U C f(A),Uisan IVF open set } = Int(f(A)).

Hence f(mInt(A)) C Int(f(A)).
(2) = (1) By Theorem 1.4 (1), f is IVF M*-open.
(2) = (3) For B € IVF(Y), from (3) it follows that

FmInt(f~(B)) € Int(f(f (B))) < Int(B).

Hence we get (3). Similarly, we get (3) = (2).
Ol

Corollary 2.11. Let f : X — Y be a function on an
IVF minimal space (X, M x ) and an [VF topological space
(Y, 7). If fis IVF M*-open, then f(A) = Int(f(A)) for
every IVF m-open set A in X.

Proof. ¥From Theorem 1.4 and Theorem 2.10, it is obvi-
ous. U

Definition 2.12. Let (X, 7) be an IVF topological space
and (Y, My ) be an IVF minimal space. Then f : X — Y
is called an interval-valued fuzzy M-open (simply, IVF
M -open) mapping if for every IVF open set A in X, f(A4)
is IVF m-openin Y.

Theorem 2.13. Let f : X — Y be a function on an
IVF topological space (X, 7) and an IVF minimal space
(Ya MY)

(1) fis IVF M-open.

(@) f(Int(A)) T mInt(f(A)) for A e IVF(X).

G) Int(f~Y(B)) < f~YmInt(B)) for B ¢
IVE(Y).

Then (1) = (2) & (3).
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Proof. {1) = (2) For A € IVF(X),

FInt(A)) = f(U{B € IVF(X) : B C A,B is
an IVF open set }) = U{f(B) € IVF(X) : f(B) C
f(A), f(B) is an IVF m-open set } C U{U € IVF(X) :
U C f(A),U is an IVF m-open set } = mInt(f(A)).
Hence f{Int(A)) C mInt(f(A)).

(2) = (3) For B € IVF(Y), from (3) it follows that
JUnt(f7H(B))) € mInt(f(f~(B))) C mInt(B).

Hence we get (3). Similarly, we get (3) = (2). O

In Theorem 2.13, the implication (2} = (1) is not true
in general, as seen in the following example.

Example 2.14. In Example 2.3, consider function f :
(X.7) — (X, M) defined as follows f(z) = x for each
x € X. Then f satisfies the condition (2) in Theorem 2.13,
but it is not IVF M -open.

Corollary 2.15. Let f : X — Y be a function on an
IVF topological space (X, 7) and an IVF minimal space
(Y, My ). If f is IVF M-open, then f(A) = mInt(f(A))
for every IVF open set A in X.

Proof. 1t follows from Theorem 1.4 and Theorem
2.13. |

Corollary 2.16. Let f : X — Y be a function on an
IVF topological space (X, 7) and an IVF minimal space
(Y, My). If My has property (B), then the following are
equivalent:

(1) f is IVF M-open.

(2) f(Int(A)) C mInt(f(A))for A€ IVF(X).

3) Int(f~Y(B)) < fYmInt(B)) for B €
IVF(Y).

Proof. Obvious. O

Definition 2.17. Let (X, M x) be an IVF minimal space
and (Y, 7) be an IVF topological space. Then f : X — Y
is called an interval-valued fuzzy M*-closed (simply, IVF
M*-closed) mapping if for every IVF m-closed set A in X,
f(A)is an IVF closed setin Y.
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Theorem 2.18. Let f : X — Y be a function on an
IVF minimal space (X, M x ) and an IVF topological space
(Y, 7). Then the following are cquivalent:

(1) fis IVF M*-closed.

(2) CIU(f(A)) € f(mCI(A)) for A € IVF(X).

(3) f7HCUB)) € mClU(f~Y(B)) for B ¢ IVF(Y).

Proof. It follows from Theorem 1.4 and Theorem
2.10. L

Corollary 2.19. Let f : X — Y be a function on an
IVF minimal space (X, M x) and an IVF topological space
(Y, 7). If fis IVF M*-closed, then f(A) = CI(f(A)) for
every IVF m-closed set A in X.

Proof. 1t is obvious. |

Definition 2.20. Let (X.7) be an IVF topological space
and (Y, My ) be an IVF minimal space. Then f : X — YV
is called an interval-valued fuzzy M-closed (simply, IVF
M -closed) mapping if for every IVF closed set A in X,
f(A) is IVF m-~closed in Y.

Theorem 2.21. Tet f : X — Y be a function on an
IVF topological space (X.7) and an IVF minimal space
(Y, My).

(1) fis IVF M-closed.

2y mCI(f(A)) C f(CU(A)) for A € IVF(X).

(3) f~H(mCUB)) C CUf~(B)) for B € IVF(Y).

Then (1) = (2) & (3).

Proof. It follows from Theorem 1.4 and Theorem
2.13. O

In Theorem 2.21, the implication (2) = (1) is not true
in general, as seen in Example 2.14.

Corollary 2.22. Let f : X — Y be a function on an
IVF topological space (X, 7) and an IVF minimal space
(Y, My ). If fis IVF M-closed, then f(A) = mCI(f(A))
for every IVF closed set 4 in X.

Proof. 1t is obvious. O

Corollary 2.23. let f : X — Y be a function on an
IVF topological space (X, 7) and an IVF minimal space
(Y, My). If My has property (5), then the following are
equivalent:

(1) f is IVF M-closed.

2y mCI{(f(A)) C f(Cl(A)) for A € IVF(X).

(3) f~H(mCI(B)) C Cl(f~Y(B)) for B IVF(Y).

Proof. Obvious. 0

Definition 2.24 ([5]). Let (X, Mx) be an IVF minimal
space. An IVF set A in X is said to be IVF m-compact
if every IVF m-open cover A = {A; : i € J}of Bhasa
finite IVF subcover. And an IVF set A in X is said to be al-
most IVF m-compact (resp., nearly IVF m-compact) if for
every IVF m-open cover A = {A; : i € J} of B, there ex-
ists Jy = {1,2,---,n} C Jsuchthat A C U;e 5, mCI(4;)
(resp., A C Usje g, mInt(mCI(A;))).

Theorem 2.25. Let f : X — Y be an IVF M-continuous
function on an IVF minimal space (X, M x) and an IVF
topological space (Y. 7). If A is an IVF m-compact set,
then f(A) is an IVF compact set.

Proof. Let {B; : i € J} be an IVF open cover of
J(A) in Y. Then since f is an IVF M-continuous func-
tion, {f'(B;) : i € J} is an IVF me-open cover of
A in X. By IVF m-compactness, there exists J; =
{1,2,---,n} C Jsuchthat A C Ujcs, f~(B;). Hence
J(A) C Uies, Bi. U

Theorem 2.26. Let f : X — Y be an IVF M-continuous
function on an IVF minimal space (X, M x) and an IVF
topological space (Y, 7). If A is an almost IVF m-compact
set, then f(A) is an almost IVF compact set.

Proof. Let {B; : i € J} be an IVF open cover of f(A) in
Y. Then {f '(B;) : i € J} is an IVF m-open cover of
Ain X. By almost IVF m-compactness, there exists Jy =
{1,2,---,n} C Jsuch that A C U ,,mClU{f~1(B))).
From Theorem 2.2, it follows

UieomCLfH(By)) € Useyy fH(CUBy))
= [ HUies, CU(B,)).
Hence f(A) C Uy, CUDB;). O

Theorem 2.27. Let f : X — Y be an IVF M -continuous
and IVF M™-open function on an IVF minimal space
(X, Mx) and an IVF topological space (Y, 7). If Aisa
nearly IVF m-compact sct, then f(A) is a nearly IVF com-
pact set.
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Proof. Let {B; : i € J} be an IVF open cover of
f(A) in Y. Then {f~(B;) : i € J} is an IVF m-
open cover of A in X. By nearly IVF m-compactness,
there exists Jo = {J1,Ja,---Jo} € J such that A C
UicsomInt(mCl(f~1(B;))). From Theorem 2.2 and The-
orem 2.10, it follows

F(A) C Vies, f(mInt(mCI(f~H(By))))

C Uieso Int(f(mCU(f~H(By))))
C UiesomInt(f(f~(CU(By))))
C Uje g, Int(CU(By)).

Hence the proof is completed. |

Bi))
Bi))
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